Step |
Hyp |
Ref |
Expression |
1 |
|
prmgaplem4.a |
⊢ 𝐴 = { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } |
2 |
|
ssrab2 |
⊢ { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ⊆ ℙ |
3 |
2
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ⊆ ℙ ) |
4 |
|
prmssnn |
⊢ ℙ ⊆ ℕ |
5 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
6 |
4 5
|
sstri |
⊢ ℙ ⊆ ℝ |
7 |
3 6
|
sstrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ⊆ ℝ ) |
8 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → ( 𝑁 ... 𝑃 ) ∈ Fin ) |
9 |
|
breq2 |
⊢ ( 𝑝 = 𝑖 → ( 𝑁 < 𝑝 ↔ 𝑁 < 𝑖 ) ) |
10 |
|
breq1 |
⊢ ( 𝑝 = 𝑖 → ( 𝑝 ≤ 𝑃 ↔ 𝑖 ≤ 𝑃 ) ) |
11 |
9 10
|
anbi12d |
⊢ ( 𝑝 = 𝑖 → ( ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) ↔ ( 𝑁 < 𝑖 ∧ 𝑖 ≤ 𝑃 ) ) ) |
12 |
11
|
elrab |
⊢ ( 𝑖 ∈ { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ↔ ( 𝑖 ∈ ℙ ∧ ( 𝑁 < 𝑖 ∧ 𝑖 ≤ 𝑃 ) ) ) |
13 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
14 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
15 |
13 14
|
anim12i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ) |
16 |
15
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → ( 𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ) |
17 |
|
prmz |
⊢ ( 𝑖 ∈ ℙ → 𝑖 ∈ ℤ ) |
18 |
17
|
adantr |
⊢ ( ( 𝑖 ∈ ℙ ∧ ( 𝑁 < 𝑖 ∧ 𝑖 ≤ 𝑃 ) ) → 𝑖 ∈ ℤ ) |
19 |
16 18
|
anim12i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) ∧ ( 𝑖 ∈ ℙ ∧ ( 𝑁 < 𝑖 ∧ 𝑖 ≤ 𝑃 ) ) ) → ( ( 𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑖 ∈ ℤ ) ) |
20 |
|
df-3an |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ↔ ( ( 𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑖 ∈ ℤ ) ) |
21 |
19 20
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) ∧ ( 𝑖 ∈ ℙ ∧ ( 𝑁 < 𝑖 ∧ 𝑖 ≤ 𝑃 ) ) ) → ( 𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ) |
22 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
23 |
22
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 𝑁 ∈ ℝ ) |
24 |
6
|
sseli |
⊢ ( 𝑖 ∈ ℙ → 𝑖 ∈ ℝ ) |
25 |
|
ltle |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑖 ∈ ℝ ) → ( 𝑁 < 𝑖 → 𝑁 ≤ 𝑖 ) ) |
26 |
23 24 25
|
syl2an |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑖 ∈ ℙ ) → ( 𝑁 < 𝑖 → 𝑁 ≤ 𝑖 ) ) |
27 |
26
|
anim1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑖 ∈ ℙ ) → ( ( 𝑁 < 𝑖 ∧ 𝑖 ≤ 𝑃 ) → ( 𝑁 ≤ 𝑖 ∧ 𝑖 ≤ 𝑃 ) ) ) |
28 |
27
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 𝑖 ∈ ℙ → ( ( 𝑁 < 𝑖 ∧ 𝑖 ≤ 𝑃 ) → ( 𝑁 ≤ 𝑖 ∧ 𝑖 ≤ 𝑃 ) ) ) ) |
29 |
28
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → ( 𝑖 ∈ ℙ → ( ( 𝑁 < 𝑖 ∧ 𝑖 ≤ 𝑃 ) → ( 𝑁 ≤ 𝑖 ∧ 𝑖 ≤ 𝑃 ) ) ) ) |
30 |
29
|
imp32 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) ∧ ( 𝑖 ∈ ℙ ∧ ( 𝑁 < 𝑖 ∧ 𝑖 ≤ 𝑃 ) ) ) → ( 𝑁 ≤ 𝑖 ∧ 𝑖 ≤ 𝑃 ) ) |
31 |
|
elfz2 |
⊢ ( 𝑖 ∈ ( 𝑁 ... 𝑃 ) ↔ ( ( 𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝑖 ∧ 𝑖 ≤ 𝑃 ) ) ) |
32 |
21 30 31
|
sylanbrc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) ∧ ( 𝑖 ∈ ℙ ∧ ( 𝑁 < 𝑖 ∧ 𝑖 ≤ 𝑃 ) ) ) → 𝑖 ∈ ( 𝑁 ... 𝑃 ) ) |
33 |
32
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → ( ( 𝑖 ∈ ℙ ∧ ( 𝑁 < 𝑖 ∧ 𝑖 ≤ 𝑃 ) ) → 𝑖 ∈ ( 𝑁 ... 𝑃 ) ) ) |
34 |
12 33
|
syl5bi |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → ( 𝑖 ∈ { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } → 𝑖 ∈ ( 𝑁 ... 𝑃 ) ) ) |
35 |
34
|
ssrdv |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ⊆ ( 𝑁 ... 𝑃 ) ) |
36 |
8 35
|
ssfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ∈ Fin ) |
37 |
|
breq2 |
⊢ ( 𝑝 = 𝑃 → ( 𝑁 < 𝑝 ↔ 𝑁 < 𝑃 ) ) |
38 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ≤ 𝑃 ↔ 𝑃 ≤ 𝑃 ) ) |
39 |
37 38
|
anbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) ↔ ( 𝑁 < 𝑃 ∧ 𝑃 ≤ 𝑃 ) ) ) |
40 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → 𝑃 ∈ ℙ ) |
41 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
42 |
41
|
nnred |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
43 |
42
|
leidd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ≤ 𝑃 ) |
44 |
43
|
anim1ci |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → ( 𝑁 < 𝑃 ∧ 𝑃 ≤ 𝑃 ) ) |
45 |
44
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → ( 𝑁 < 𝑃 ∧ 𝑃 ≤ 𝑃 ) ) |
46 |
39 40 45
|
elrabd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → 𝑃 ∈ { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ) |
47 |
46
|
ne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ≠ ∅ ) |
48 |
|
sseq1 |
⊢ ( 𝐴 = { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } → ( 𝐴 ⊆ ℝ ↔ { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ⊆ ℝ ) ) |
49 |
|
eleq1 |
⊢ ( 𝐴 = { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } → ( 𝐴 ∈ Fin ↔ { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ∈ Fin ) ) |
50 |
|
neeq1 |
⊢ ( 𝐴 = { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } → ( 𝐴 ≠ ∅ ↔ { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ≠ ∅ ) ) |
51 |
48 49 50
|
3anbi123d |
⊢ ( 𝐴 = { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } → ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ↔ ( { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ⊆ ℝ ∧ { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ≠ ∅ ) ) ) |
52 |
1 51
|
ax-mp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ↔ ( { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ⊆ ℝ ∧ { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃 ) } ≠ ∅ ) ) |
53 |
7 36 47 52
|
syl3anbrc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) |
54 |
|
fiminre |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
55 |
53 54
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |