| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmgaplem4.a |  |-  A = { p e. Prime | ( N < p /\ p <_ P ) } | 
						
							| 2 |  | ssrab2 |  |-  { p e. Prime | ( N < p /\ p <_ P ) } C_ Prime | 
						
							| 3 | 2 | a1i |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> { p e. Prime | ( N < p /\ p <_ P ) } C_ Prime ) | 
						
							| 4 |  | prmssnn |  |-  Prime C_ NN | 
						
							| 5 |  | nnssre |  |-  NN C_ RR | 
						
							| 6 | 4 5 | sstri |  |-  Prime C_ RR | 
						
							| 7 | 3 6 | sstrdi |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> { p e. Prime | ( N < p /\ p <_ P ) } C_ RR ) | 
						
							| 8 |  | fzfid |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( N ... P ) e. Fin ) | 
						
							| 9 |  | breq2 |  |-  ( p = i -> ( N < p <-> N < i ) ) | 
						
							| 10 |  | breq1 |  |-  ( p = i -> ( p <_ P <-> i <_ P ) ) | 
						
							| 11 | 9 10 | anbi12d |  |-  ( p = i -> ( ( N < p /\ p <_ P ) <-> ( N < i /\ i <_ P ) ) ) | 
						
							| 12 | 11 | elrab |  |-  ( i e. { p e. Prime | ( N < p /\ p <_ P ) } <-> ( i e. Prime /\ ( N < i /\ i <_ P ) ) ) | 
						
							| 13 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 14 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 15 | 13 14 | anim12i |  |-  ( ( N e. NN /\ P e. Prime ) -> ( N e. ZZ /\ P e. ZZ ) ) | 
						
							| 16 | 15 | 3adant3 |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( N e. ZZ /\ P e. ZZ ) ) | 
						
							| 17 |  | prmz |  |-  ( i e. Prime -> i e. ZZ ) | 
						
							| 18 | 17 | adantr |  |-  ( ( i e. Prime /\ ( N < i /\ i <_ P ) ) -> i e. ZZ ) | 
						
							| 19 | 16 18 | anim12i |  |-  ( ( ( N e. NN /\ P e. Prime /\ N < P ) /\ ( i e. Prime /\ ( N < i /\ i <_ P ) ) ) -> ( ( N e. ZZ /\ P e. ZZ ) /\ i e. ZZ ) ) | 
						
							| 20 |  | df-3an |  |-  ( ( N e. ZZ /\ P e. ZZ /\ i e. ZZ ) <-> ( ( N e. ZZ /\ P e. ZZ ) /\ i e. ZZ ) ) | 
						
							| 21 | 19 20 | sylibr |  |-  ( ( ( N e. NN /\ P e. Prime /\ N < P ) /\ ( i e. Prime /\ ( N < i /\ i <_ P ) ) ) -> ( N e. ZZ /\ P e. ZZ /\ i e. ZZ ) ) | 
						
							| 22 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 23 | 22 | adantr |  |-  ( ( N e. NN /\ P e. Prime ) -> N e. RR ) | 
						
							| 24 | 6 | sseli |  |-  ( i e. Prime -> i e. RR ) | 
						
							| 25 |  | ltle |  |-  ( ( N e. RR /\ i e. RR ) -> ( N < i -> N <_ i ) ) | 
						
							| 26 | 23 24 25 | syl2an |  |-  ( ( ( N e. NN /\ P e. Prime ) /\ i e. Prime ) -> ( N < i -> N <_ i ) ) | 
						
							| 27 | 26 | anim1d |  |-  ( ( ( N e. NN /\ P e. Prime ) /\ i e. Prime ) -> ( ( N < i /\ i <_ P ) -> ( N <_ i /\ i <_ P ) ) ) | 
						
							| 28 | 27 | ex |  |-  ( ( N e. NN /\ P e. Prime ) -> ( i e. Prime -> ( ( N < i /\ i <_ P ) -> ( N <_ i /\ i <_ P ) ) ) ) | 
						
							| 29 | 28 | 3adant3 |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( i e. Prime -> ( ( N < i /\ i <_ P ) -> ( N <_ i /\ i <_ P ) ) ) ) | 
						
							| 30 | 29 | imp32 |  |-  ( ( ( N e. NN /\ P e. Prime /\ N < P ) /\ ( i e. Prime /\ ( N < i /\ i <_ P ) ) ) -> ( N <_ i /\ i <_ P ) ) | 
						
							| 31 |  | elfz2 |  |-  ( i e. ( N ... P ) <-> ( ( N e. ZZ /\ P e. ZZ /\ i e. ZZ ) /\ ( N <_ i /\ i <_ P ) ) ) | 
						
							| 32 | 21 30 31 | sylanbrc |  |-  ( ( ( N e. NN /\ P e. Prime /\ N < P ) /\ ( i e. Prime /\ ( N < i /\ i <_ P ) ) ) -> i e. ( N ... P ) ) | 
						
							| 33 | 32 | ex |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( ( i e. Prime /\ ( N < i /\ i <_ P ) ) -> i e. ( N ... P ) ) ) | 
						
							| 34 | 12 33 | biimtrid |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( i e. { p e. Prime | ( N < p /\ p <_ P ) } -> i e. ( N ... P ) ) ) | 
						
							| 35 | 34 | ssrdv |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> { p e. Prime | ( N < p /\ p <_ P ) } C_ ( N ... P ) ) | 
						
							| 36 | 8 35 | ssfid |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> { p e. Prime | ( N < p /\ p <_ P ) } e. Fin ) | 
						
							| 37 |  | breq2 |  |-  ( p = P -> ( N < p <-> N < P ) ) | 
						
							| 38 |  | breq1 |  |-  ( p = P -> ( p <_ P <-> P <_ P ) ) | 
						
							| 39 | 37 38 | anbi12d |  |-  ( p = P -> ( ( N < p /\ p <_ P ) <-> ( N < P /\ P <_ P ) ) ) | 
						
							| 40 |  | simp2 |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> P e. Prime ) | 
						
							| 41 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 42 | 41 | nnred |  |-  ( P e. Prime -> P e. RR ) | 
						
							| 43 | 42 | leidd |  |-  ( P e. Prime -> P <_ P ) | 
						
							| 44 | 43 | anim1ci |  |-  ( ( P e. Prime /\ N < P ) -> ( N < P /\ P <_ P ) ) | 
						
							| 45 | 44 | 3adant1 |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( N < P /\ P <_ P ) ) | 
						
							| 46 | 39 40 45 | elrabd |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> P e. { p e. Prime | ( N < p /\ p <_ P ) } ) | 
						
							| 47 | 46 | ne0d |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> { p e. Prime | ( N < p /\ p <_ P ) } =/= (/) ) | 
						
							| 48 |  | sseq1 |  |-  ( A = { p e. Prime | ( N < p /\ p <_ P ) } -> ( A C_ RR <-> { p e. Prime | ( N < p /\ p <_ P ) } C_ RR ) ) | 
						
							| 49 |  | eleq1 |  |-  ( A = { p e. Prime | ( N < p /\ p <_ P ) } -> ( A e. Fin <-> { p e. Prime | ( N < p /\ p <_ P ) } e. Fin ) ) | 
						
							| 50 |  | neeq1 |  |-  ( A = { p e. Prime | ( N < p /\ p <_ P ) } -> ( A =/= (/) <-> { p e. Prime | ( N < p /\ p <_ P ) } =/= (/) ) ) | 
						
							| 51 | 48 49 50 | 3anbi123d |  |-  ( A = { p e. Prime | ( N < p /\ p <_ P ) } -> ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) <-> ( { p e. Prime | ( N < p /\ p <_ P ) } C_ RR /\ { p e. Prime | ( N < p /\ p <_ P ) } e. Fin /\ { p e. Prime | ( N < p /\ p <_ P ) } =/= (/) ) ) ) | 
						
							| 52 | 1 51 | ax-mp |  |-  ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) <-> ( { p e. Prime | ( N < p /\ p <_ P ) } C_ RR /\ { p e. Prime | ( N < p /\ p <_ P ) } e. Fin /\ { p e. Prime | ( N < p /\ p <_ P ) } =/= (/) ) ) | 
						
							| 53 | 7 36 47 52 | syl3anbrc |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( A C_ RR /\ A e. Fin /\ A =/= (/) ) ) | 
						
							| 54 |  | fiminre |  |-  ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A x <_ y ) | 
						
							| 55 | 53 54 | syl |  |-  ( ( N e. NN /\ P e. Prime /\ N < P ) -> E. x e. A A. y e. A x <_ y ) |