Step |
Hyp |
Ref |
Expression |
1 |
|
prmgaplem4.a |
|- A = { p e. Prime | ( N < p /\ p <_ P ) } |
2 |
|
ssrab2 |
|- { p e. Prime | ( N < p /\ p <_ P ) } C_ Prime |
3 |
2
|
a1i |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> { p e. Prime | ( N < p /\ p <_ P ) } C_ Prime ) |
4 |
|
prmssnn |
|- Prime C_ NN |
5 |
|
nnssre |
|- NN C_ RR |
6 |
4 5
|
sstri |
|- Prime C_ RR |
7 |
3 6
|
sstrdi |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> { p e. Prime | ( N < p /\ p <_ P ) } C_ RR ) |
8 |
|
fzfid |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( N ... P ) e. Fin ) |
9 |
|
breq2 |
|- ( p = i -> ( N < p <-> N < i ) ) |
10 |
|
breq1 |
|- ( p = i -> ( p <_ P <-> i <_ P ) ) |
11 |
9 10
|
anbi12d |
|- ( p = i -> ( ( N < p /\ p <_ P ) <-> ( N < i /\ i <_ P ) ) ) |
12 |
11
|
elrab |
|- ( i e. { p e. Prime | ( N < p /\ p <_ P ) } <-> ( i e. Prime /\ ( N < i /\ i <_ P ) ) ) |
13 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
14 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
15 |
13 14
|
anim12i |
|- ( ( N e. NN /\ P e. Prime ) -> ( N e. ZZ /\ P e. ZZ ) ) |
16 |
15
|
3adant3 |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( N e. ZZ /\ P e. ZZ ) ) |
17 |
|
prmz |
|- ( i e. Prime -> i e. ZZ ) |
18 |
17
|
adantr |
|- ( ( i e. Prime /\ ( N < i /\ i <_ P ) ) -> i e. ZZ ) |
19 |
16 18
|
anim12i |
|- ( ( ( N e. NN /\ P e. Prime /\ N < P ) /\ ( i e. Prime /\ ( N < i /\ i <_ P ) ) ) -> ( ( N e. ZZ /\ P e. ZZ ) /\ i e. ZZ ) ) |
20 |
|
df-3an |
|- ( ( N e. ZZ /\ P e. ZZ /\ i e. ZZ ) <-> ( ( N e. ZZ /\ P e. ZZ ) /\ i e. ZZ ) ) |
21 |
19 20
|
sylibr |
|- ( ( ( N e. NN /\ P e. Prime /\ N < P ) /\ ( i e. Prime /\ ( N < i /\ i <_ P ) ) ) -> ( N e. ZZ /\ P e. ZZ /\ i e. ZZ ) ) |
22 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
23 |
22
|
adantr |
|- ( ( N e. NN /\ P e. Prime ) -> N e. RR ) |
24 |
6
|
sseli |
|- ( i e. Prime -> i e. RR ) |
25 |
|
ltle |
|- ( ( N e. RR /\ i e. RR ) -> ( N < i -> N <_ i ) ) |
26 |
23 24 25
|
syl2an |
|- ( ( ( N e. NN /\ P e. Prime ) /\ i e. Prime ) -> ( N < i -> N <_ i ) ) |
27 |
26
|
anim1d |
|- ( ( ( N e. NN /\ P e. Prime ) /\ i e. Prime ) -> ( ( N < i /\ i <_ P ) -> ( N <_ i /\ i <_ P ) ) ) |
28 |
27
|
ex |
|- ( ( N e. NN /\ P e. Prime ) -> ( i e. Prime -> ( ( N < i /\ i <_ P ) -> ( N <_ i /\ i <_ P ) ) ) ) |
29 |
28
|
3adant3 |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( i e. Prime -> ( ( N < i /\ i <_ P ) -> ( N <_ i /\ i <_ P ) ) ) ) |
30 |
29
|
imp32 |
|- ( ( ( N e. NN /\ P e. Prime /\ N < P ) /\ ( i e. Prime /\ ( N < i /\ i <_ P ) ) ) -> ( N <_ i /\ i <_ P ) ) |
31 |
|
elfz2 |
|- ( i e. ( N ... P ) <-> ( ( N e. ZZ /\ P e. ZZ /\ i e. ZZ ) /\ ( N <_ i /\ i <_ P ) ) ) |
32 |
21 30 31
|
sylanbrc |
|- ( ( ( N e. NN /\ P e. Prime /\ N < P ) /\ ( i e. Prime /\ ( N < i /\ i <_ P ) ) ) -> i e. ( N ... P ) ) |
33 |
32
|
ex |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( ( i e. Prime /\ ( N < i /\ i <_ P ) ) -> i e. ( N ... P ) ) ) |
34 |
12 33
|
syl5bi |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( i e. { p e. Prime | ( N < p /\ p <_ P ) } -> i e. ( N ... P ) ) ) |
35 |
34
|
ssrdv |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> { p e. Prime | ( N < p /\ p <_ P ) } C_ ( N ... P ) ) |
36 |
8 35
|
ssfid |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> { p e. Prime | ( N < p /\ p <_ P ) } e. Fin ) |
37 |
|
breq2 |
|- ( p = P -> ( N < p <-> N < P ) ) |
38 |
|
breq1 |
|- ( p = P -> ( p <_ P <-> P <_ P ) ) |
39 |
37 38
|
anbi12d |
|- ( p = P -> ( ( N < p /\ p <_ P ) <-> ( N < P /\ P <_ P ) ) ) |
40 |
|
simp2 |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> P e. Prime ) |
41 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
42 |
41
|
nnred |
|- ( P e. Prime -> P e. RR ) |
43 |
42
|
leidd |
|- ( P e. Prime -> P <_ P ) |
44 |
43
|
anim1ci |
|- ( ( P e. Prime /\ N < P ) -> ( N < P /\ P <_ P ) ) |
45 |
44
|
3adant1 |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( N < P /\ P <_ P ) ) |
46 |
39 40 45
|
elrabd |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> P e. { p e. Prime | ( N < p /\ p <_ P ) } ) |
47 |
46
|
ne0d |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> { p e. Prime | ( N < p /\ p <_ P ) } =/= (/) ) |
48 |
|
sseq1 |
|- ( A = { p e. Prime | ( N < p /\ p <_ P ) } -> ( A C_ RR <-> { p e. Prime | ( N < p /\ p <_ P ) } C_ RR ) ) |
49 |
|
eleq1 |
|- ( A = { p e. Prime | ( N < p /\ p <_ P ) } -> ( A e. Fin <-> { p e. Prime | ( N < p /\ p <_ P ) } e. Fin ) ) |
50 |
|
neeq1 |
|- ( A = { p e. Prime | ( N < p /\ p <_ P ) } -> ( A =/= (/) <-> { p e. Prime | ( N < p /\ p <_ P ) } =/= (/) ) ) |
51 |
48 49 50
|
3anbi123d |
|- ( A = { p e. Prime | ( N < p /\ p <_ P ) } -> ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) <-> ( { p e. Prime | ( N < p /\ p <_ P ) } C_ RR /\ { p e. Prime | ( N < p /\ p <_ P ) } e. Fin /\ { p e. Prime | ( N < p /\ p <_ P ) } =/= (/) ) ) ) |
52 |
1 51
|
ax-mp |
|- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) <-> ( { p e. Prime | ( N < p /\ p <_ P ) } C_ RR /\ { p e. Prime | ( N < p /\ p <_ P ) } e. Fin /\ { p e. Prime | ( N < p /\ p <_ P ) } =/= (/) ) ) |
53 |
7 36 47 52
|
syl3anbrc |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> ( A C_ RR /\ A e. Fin /\ A =/= (/) ) ) |
54 |
|
fiminre |
|- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A x <_ y ) |
55 |
53 54
|
syl |
|- ( ( N e. NN /\ P e. Prime /\ N < P ) -> E. x e. A A. y e. A x <_ y ) |