Metamath Proof Explorer


Theorem prmgaplem4

Description: Lemma for prmgap . (Contributed by AV, 10-Aug-2020)

Ref Expression
Hypothesis prmgaplem4.a A=p|N<ppP
Assertion prmgaplem4 NPN<PxAyAxy

Proof

Step Hyp Ref Expression
1 prmgaplem4.a A=p|N<ppP
2 ssrab2 p|N<ppP
3 2 a1i NPN<Pp|N<ppP
4 prmssnn
5 nnssre
6 4 5 sstri
7 3 6 sstrdi NPN<Pp|N<ppP
8 fzfid NPN<PNPFin
9 breq2 p=iN<pN<i
10 breq1 p=ipPiP
11 9 10 anbi12d p=iN<ppPN<iiP
12 11 elrab ip|N<ppPiN<iiP
13 nnz NN
14 prmz PP
15 13 14 anim12i NPNP
16 15 3adant3 NPN<PNP
17 prmz ii
18 17 adantr iN<iiPi
19 16 18 anim12i NPN<PiN<iiPNPi
20 df-3an NPiNPi
21 19 20 sylibr NPN<PiN<iiPNPi
22 nnre NN
23 22 adantr NPN
24 6 sseli ii
25 ltle NiN<iNi
26 23 24 25 syl2an NPiN<iNi
27 26 anim1d NPiN<iiPNiiP
28 27 ex NPiN<iiPNiiP
29 28 3adant3 NPN<PiN<iiPNiiP
30 29 imp32 NPN<PiN<iiPNiiP
31 elfz2 iNPNPiNiiP
32 21 30 31 sylanbrc NPN<PiN<iiPiNP
33 32 ex NPN<PiN<iiPiNP
34 12 33 biimtrid NPN<Pip|N<ppPiNP
35 34 ssrdv NPN<Pp|N<ppPNP
36 8 35 ssfid NPN<Pp|N<ppPFin
37 breq2 p=PN<pN<P
38 breq1 p=PpPPP
39 37 38 anbi12d p=PN<ppPN<PPP
40 simp2 NPN<PP
41 prmnn PP
42 41 nnred PP
43 42 leidd PPP
44 43 anim1ci PN<PN<PPP
45 44 3adant1 NPN<PN<PPP
46 39 40 45 elrabd NPN<PPp|N<ppP
47 46 ne0d NPN<Pp|N<ppP
48 sseq1 A=p|N<ppPAp|N<ppP
49 eleq1 A=p|N<ppPAFinp|N<ppPFin
50 neeq1 A=p|N<ppPAp|N<ppP
51 48 49 50 3anbi123d A=p|N<ppPAAFinAp|N<ppPp|N<ppPFinp|N<ppP
52 1 51 ax-mp AAFinAp|N<ppPp|N<ppPFinp|N<ppP
53 7 36 47 52 syl3anbrc NPN<PAAFinA
54 fiminre AAFinAxAyAxy
55 53 54 syl NPN<PxAyAxy