Description: Lemma for prmgap . (Contributed by AV, 10-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prmgaplem4.a | |
|
Assertion | prmgaplem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmgaplem4.a | |
|
2 | ssrab2 | |
|
3 | 2 | a1i | |
4 | prmssnn | |
|
5 | nnssre | |
|
6 | 4 5 | sstri | |
7 | 3 6 | sstrdi | |
8 | fzfid | |
|
9 | breq2 | |
|
10 | breq1 | |
|
11 | 9 10 | anbi12d | |
12 | 11 | elrab | |
13 | nnz | |
|
14 | prmz | |
|
15 | 13 14 | anim12i | |
16 | 15 | 3adant3 | |
17 | prmz | |
|
18 | 17 | adantr | |
19 | 16 18 | anim12i | |
20 | df-3an | |
|
21 | 19 20 | sylibr | |
22 | nnre | |
|
23 | 22 | adantr | |
24 | 6 | sseli | |
25 | ltle | |
|
26 | 23 24 25 | syl2an | |
27 | 26 | anim1d | |
28 | 27 | ex | |
29 | 28 | 3adant3 | |
30 | 29 | imp32 | |
31 | elfz2 | |
|
32 | 21 30 31 | sylanbrc | |
33 | 32 | ex | |
34 | 12 33 | biimtrid | |
35 | 34 | ssrdv | |
36 | 8 35 | ssfid | |
37 | breq2 | |
|
38 | breq1 | |
|
39 | 37 38 | anbi12d | |
40 | simp2 | |
|
41 | prmnn | |
|
42 | 41 | nnred | |
43 | 42 | leidd | |
44 | 43 | anim1ci | |
45 | 44 | 3adant1 | |
46 | 39 40 45 | elrabd | |
47 | 46 | ne0d | |
48 | sseq1 | |
|
49 | eleq1 | |
|
50 | neeq1 | |
|
51 | 48 49 50 | 3anbi123d | |
52 | 1 51 | ax-mp | |
53 | 7 36 47 52 | syl3anbrc | |
54 | fiminre | |
|
55 | 53 54 | syl | |