| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elrabi |
|- ( r e. { q e. Prime | q < N } -> r e. Prime ) |
| 2 |
1
|
ad2antlr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ A. z e. { q e. Prime | q < N } z <_ r ) -> r e. Prime ) |
| 3 |
|
breq1 |
|- ( p = r -> ( p < N <-> r < N ) ) |
| 4 |
|
oveq1 |
|- ( p = r -> ( p + 1 ) = ( r + 1 ) ) |
| 5 |
4
|
oveq1d |
|- ( p = r -> ( ( p + 1 ) ..^ N ) = ( ( r + 1 ) ..^ N ) ) |
| 6 |
5
|
raleqdv |
|- ( p = r -> ( A. z e. ( ( p + 1 ) ..^ N ) z e/ Prime <-> A. z e. ( ( r + 1 ) ..^ N ) z e/ Prime ) ) |
| 7 |
3 6
|
anbi12d |
|- ( p = r -> ( ( p < N /\ A. z e. ( ( p + 1 ) ..^ N ) z e/ Prime ) <-> ( r < N /\ A. z e. ( ( r + 1 ) ..^ N ) z e/ Prime ) ) ) |
| 8 |
7
|
adantl |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ A. z e. { q e. Prime | q < N } z <_ r ) /\ p = r ) -> ( ( p < N /\ A. z e. ( ( p + 1 ) ..^ N ) z e/ Prime ) <-> ( r < N /\ A. z e. ( ( r + 1 ) ..^ N ) z e/ Prime ) ) ) |
| 9 |
|
breq1 |
|- ( q = r -> ( q < N <-> r < N ) ) |
| 10 |
9
|
elrab |
|- ( r e. { q e. Prime | q < N } <-> ( r e. Prime /\ r < N ) ) |
| 11 |
10
|
simprbi |
|- ( r e. { q e. Prime | q < N } -> r < N ) |
| 12 |
11
|
ad2antlr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ A. z e. { q e. Prime | q < N } z <_ r ) -> r < N ) |
| 13 |
|
elfzo2 |
|- ( z e. ( ( r + 1 ) ..^ N ) <-> ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) ) |
| 14 |
|
breq1 |
|- ( q = z -> ( q < N <-> z < N ) ) |
| 15 |
|
simpl |
|- ( ( z e. Prime /\ ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) ) -> z e. Prime ) |
| 16 |
|
simpr3 |
|- ( ( z e. Prime /\ ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) ) -> z < N ) |
| 17 |
14 15 16
|
elrabd |
|- ( ( z e. Prime /\ ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) ) -> z e. { q e. Prime | q < N } ) |
| 18 |
17
|
adantrl |
|- ( ( z e. Prime /\ ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) ) ) -> z e. { q e. Prime | q < N } ) |
| 19 |
|
eluz2 |
|- ( z e. ( ZZ>= ` ( r + 1 ) ) <-> ( ( r + 1 ) e. ZZ /\ z e. ZZ /\ ( r + 1 ) <_ z ) ) |
| 20 |
|
prmz |
|- ( r e. Prime -> r e. ZZ ) |
| 21 |
|
zltp1le |
|- ( ( r e. ZZ /\ z e. ZZ ) -> ( r < z <-> ( r + 1 ) <_ z ) ) |
| 22 |
20 21
|
sylan |
|- ( ( r e. Prime /\ z e. ZZ ) -> ( r < z <-> ( r + 1 ) <_ z ) ) |
| 23 |
|
prmnn |
|- ( r e. Prime -> r e. NN ) |
| 24 |
23
|
nnred |
|- ( r e. Prime -> r e. RR ) |
| 25 |
|
zre |
|- ( z e. ZZ -> z e. RR ) |
| 26 |
|
ltnle |
|- ( ( r e. RR /\ z e. RR ) -> ( r < z <-> -. z <_ r ) ) |
| 27 |
26
|
biimpd |
|- ( ( r e. RR /\ z e. RR ) -> ( r < z -> -. z <_ r ) ) |
| 28 |
24 25 27
|
syl2an |
|- ( ( r e. Prime /\ z e. ZZ ) -> ( r < z -> -. z <_ r ) ) |
| 29 |
|
pm2.21 |
|- ( -. z <_ r -> ( z <_ r -> z e/ Prime ) ) |
| 30 |
28 29
|
syl6 |
|- ( ( r e. Prime /\ z e. ZZ ) -> ( r < z -> ( z <_ r -> z e/ Prime ) ) ) |
| 31 |
22 30
|
sylbird |
|- ( ( r e. Prime /\ z e. ZZ ) -> ( ( r + 1 ) <_ z -> ( z <_ r -> z e/ Prime ) ) ) |
| 32 |
31
|
expcom |
|- ( z e. ZZ -> ( r e. Prime -> ( ( r + 1 ) <_ z -> ( z <_ r -> z e/ Prime ) ) ) ) |
| 33 |
32
|
com23 |
|- ( z e. ZZ -> ( ( r + 1 ) <_ z -> ( r e. Prime -> ( z <_ r -> z e/ Prime ) ) ) ) |
| 34 |
33
|
a1i |
|- ( ( r + 1 ) e. ZZ -> ( z e. ZZ -> ( ( r + 1 ) <_ z -> ( r e. Prime -> ( z <_ r -> z e/ Prime ) ) ) ) ) |
| 35 |
34
|
3imp |
|- ( ( ( r + 1 ) e. ZZ /\ z e. ZZ /\ ( r + 1 ) <_ z ) -> ( r e. Prime -> ( z <_ r -> z e/ Prime ) ) ) |
| 36 |
19 35
|
sylbi |
|- ( z e. ( ZZ>= ` ( r + 1 ) ) -> ( r e. Prime -> ( z <_ r -> z e/ Prime ) ) ) |
| 37 |
36
|
3ad2ant1 |
|- ( ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) -> ( r e. Prime -> ( z <_ r -> z e/ Prime ) ) ) |
| 38 |
1 37
|
syl5com |
|- ( r e. { q e. Prime | q < N } -> ( ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) -> ( z <_ r -> z e/ Prime ) ) ) |
| 39 |
38
|
adantl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) -> ( ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) -> ( z <_ r -> z e/ Prime ) ) ) |
| 40 |
39
|
imp |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) ) -> ( z <_ r -> z e/ Prime ) ) |
| 41 |
40
|
adantl |
|- ( ( z e. Prime /\ ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) ) ) -> ( z <_ r -> z e/ Prime ) ) |
| 42 |
18 41
|
embantd |
|- ( ( z e. Prime /\ ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) ) ) -> ( ( z e. { q e. Prime | q < N } -> z <_ r ) -> z e/ Prime ) ) |
| 43 |
42
|
ex |
|- ( z e. Prime -> ( ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) ) -> ( ( z e. { q e. Prime | q < N } -> z <_ r ) -> z e/ Prime ) ) ) |
| 44 |
|
df-nel |
|- ( z e/ Prime <-> -. z e. Prime ) |
| 45 |
|
2a1 |
|- ( z e/ Prime -> ( ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) ) -> ( ( z e. { q e. Prime | q < N } -> z <_ r ) -> z e/ Prime ) ) ) |
| 46 |
44 45
|
sylbir |
|- ( -. z e. Prime -> ( ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) ) -> ( ( z e. { q e. Prime | q < N } -> z <_ r ) -> z e/ Prime ) ) ) |
| 47 |
43 46
|
pm2.61i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) ) -> ( ( z e. { q e. Prime | q < N } -> z <_ r ) -> z e/ Prime ) ) |
| 48 |
47
|
impancom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ ( z e. { q e. Prime | q < N } -> z <_ r ) ) -> ( ( z e. ( ZZ>= ` ( r + 1 ) ) /\ N e. ZZ /\ z < N ) -> z e/ Prime ) ) |
| 49 |
13 48
|
biimtrid |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ ( z e. { q e. Prime | q < N } -> z <_ r ) ) -> ( z e. ( ( r + 1 ) ..^ N ) -> z e/ Prime ) ) |
| 50 |
49
|
ex |
|- ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) -> ( ( z e. { q e. Prime | q < N } -> z <_ r ) -> ( z e. ( ( r + 1 ) ..^ N ) -> z e/ Prime ) ) ) |
| 51 |
50
|
ralimdv2 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) -> ( A. z e. { q e. Prime | q < N } z <_ r -> A. z e. ( ( r + 1 ) ..^ N ) z e/ Prime ) ) |
| 52 |
51
|
imp |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ A. z e. { q e. Prime | q < N } z <_ r ) -> A. z e. ( ( r + 1 ) ..^ N ) z e/ Prime ) |
| 53 |
12 52
|
jca |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ A. z e. { q e. Prime | q < N } z <_ r ) -> ( r < N /\ A. z e. ( ( r + 1 ) ..^ N ) z e/ Prime ) ) |
| 54 |
2 8 53
|
rspcedvd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ r e. { q e. Prime | q < N } ) /\ A. z e. { q e. Prime | q < N } z <_ r ) -> E. p e. Prime ( p < N /\ A. z e. ( ( p + 1 ) ..^ N ) z e/ Prime ) ) |
| 55 |
|
eqid |
|- { q e. Prime | q < N } = { q e. Prime | q < N } |
| 56 |
55
|
prmgaplem3 |
|- ( N e. ( ZZ>= ` 3 ) -> E. r e. { q e. Prime | q < N } A. z e. { q e. Prime | q < N } z <_ r ) |
| 57 |
54 56
|
r19.29a |
|- ( N e. ( ZZ>= ` 3 ) -> E. p e. Prime ( p < N /\ A. z e. ( ( p + 1 ) ..^ N ) z e/ Prime ) ) |