| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmgaplem3.a |
|- A = { p e. Prime | p < N } |
| 2 |
|
ssrab2 |
|- { p e. Prime | p < N } C_ Prime |
| 3 |
2
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> { p e. Prime | p < N } C_ Prime ) |
| 4 |
|
prmssnn |
|- Prime C_ NN |
| 5 |
|
nnssre |
|- NN C_ RR |
| 6 |
4 5
|
sstri |
|- Prime C_ RR |
| 7 |
3 6
|
sstrdi |
|- ( N e. ( ZZ>= ` 3 ) -> { p e. Prime | p < N } C_ RR ) |
| 8 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
| 9 |
|
breq1 |
|- ( p = i -> ( p < N <-> i < N ) ) |
| 10 |
9
|
elrab |
|- ( i e. { p e. Prime | p < N } <-> ( i e. Prime /\ i < N ) ) |
| 11 |
|
prmnn |
|- ( i e. Prime -> i e. NN ) |
| 12 |
11
|
nnnn0d |
|- ( i e. Prime -> i e. NN0 ) |
| 13 |
12
|
ad2antrl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( i e. Prime /\ i < N ) ) -> i e. NN0 ) |
| 14 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
| 15 |
14
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( i e. Prime /\ i < N ) ) -> N e. NN ) |
| 16 |
|
simprr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( i e. Prime /\ i < N ) ) -> i < N ) |
| 17 |
|
elfzo0 |
|- ( i e. ( 0 ..^ N ) <-> ( i e. NN0 /\ N e. NN /\ i < N ) ) |
| 18 |
13 15 16 17
|
syl3anbrc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( i e. Prime /\ i < N ) ) -> i e. ( 0 ..^ N ) ) |
| 19 |
18
|
ex |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( i e. Prime /\ i < N ) -> i e. ( 0 ..^ N ) ) ) |
| 20 |
10 19
|
biimtrid |
|- ( N e. ( ZZ>= ` 3 ) -> ( i e. { p e. Prime | p < N } -> i e. ( 0 ..^ N ) ) ) |
| 21 |
20
|
ssrdv |
|- ( N e. ( ZZ>= ` 3 ) -> { p e. Prime | p < N } C_ ( 0 ..^ N ) ) |
| 22 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ { p e. Prime | p < N } C_ ( 0 ..^ N ) ) -> { p e. Prime | p < N } e. Fin ) |
| 23 |
8 21 22
|
sylancr |
|- ( N e. ( ZZ>= ` 3 ) -> { p e. Prime | p < N } e. Fin ) |
| 24 |
|
breq1 |
|- ( p = 2 -> ( p < N <-> 2 < N ) ) |
| 25 |
|
2prm |
|- 2 e. Prime |
| 26 |
25
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> 2 e. Prime ) |
| 27 |
|
eluz2 |
|- ( N e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ N e. ZZ /\ 3 <_ N ) ) |
| 28 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 29 |
28
|
breq1i |
|- ( 3 <_ N <-> ( 2 + 1 ) <_ N ) |
| 30 |
|
2z |
|- 2 e. ZZ |
| 31 |
|
zltp1le |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 < N <-> ( 2 + 1 ) <_ N ) ) |
| 32 |
30 31
|
mpan |
|- ( N e. ZZ -> ( 2 < N <-> ( 2 + 1 ) <_ N ) ) |
| 33 |
32
|
biimprd |
|- ( N e. ZZ -> ( ( 2 + 1 ) <_ N -> 2 < N ) ) |
| 34 |
29 33
|
biimtrid |
|- ( N e. ZZ -> ( 3 <_ N -> 2 < N ) ) |
| 35 |
34
|
imp |
|- ( ( N e. ZZ /\ 3 <_ N ) -> 2 < N ) |
| 36 |
35
|
3adant1 |
|- ( ( 3 e. ZZ /\ N e. ZZ /\ 3 <_ N ) -> 2 < N ) |
| 37 |
27 36
|
sylbi |
|- ( N e. ( ZZ>= ` 3 ) -> 2 < N ) |
| 38 |
24 26 37
|
elrabd |
|- ( N e. ( ZZ>= ` 3 ) -> 2 e. { p e. Prime | p < N } ) |
| 39 |
38
|
ne0d |
|- ( N e. ( ZZ>= ` 3 ) -> { p e. Prime | p < N } =/= (/) ) |
| 40 |
|
sseq1 |
|- ( A = { p e. Prime | p < N } -> ( A C_ RR <-> { p e. Prime | p < N } C_ RR ) ) |
| 41 |
|
eleq1 |
|- ( A = { p e. Prime | p < N } -> ( A e. Fin <-> { p e. Prime | p < N } e. Fin ) ) |
| 42 |
|
neeq1 |
|- ( A = { p e. Prime | p < N } -> ( A =/= (/) <-> { p e. Prime | p < N } =/= (/) ) ) |
| 43 |
40 41 42
|
3anbi123d |
|- ( A = { p e. Prime | p < N } -> ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) <-> ( { p e. Prime | p < N } C_ RR /\ { p e. Prime | p < N } e. Fin /\ { p e. Prime | p < N } =/= (/) ) ) ) |
| 44 |
1 43
|
ax-mp |
|- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) <-> ( { p e. Prime | p < N } C_ RR /\ { p e. Prime | p < N } e. Fin /\ { p e. Prime | p < N } =/= (/) ) ) |
| 45 |
7 23 39 44
|
syl3anbrc |
|- ( N e. ( ZZ>= ` 3 ) -> ( A C_ RR /\ A e. Fin /\ A =/= (/) ) ) |
| 46 |
|
fimaxre |
|- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A y <_ x ) |
| 47 |
45 46
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> E. x e. A A. y e. A y <_ x ) |