Step |
Hyp |
Ref |
Expression |
1 |
|
prmgaplem3.a |
|- A = { p e. Prime | p < N } |
2 |
|
ssrab2 |
|- { p e. Prime | p < N } C_ Prime |
3 |
2
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> { p e. Prime | p < N } C_ Prime ) |
4 |
|
prmssnn |
|- Prime C_ NN |
5 |
|
nnssre |
|- NN C_ RR |
6 |
4 5
|
sstri |
|- Prime C_ RR |
7 |
3 6
|
sstrdi |
|- ( N e. ( ZZ>= ` 3 ) -> { p e. Prime | p < N } C_ RR ) |
8 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
9 |
|
breq1 |
|- ( p = i -> ( p < N <-> i < N ) ) |
10 |
9
|
elrab |
|- ( i e. { p e. Prime | p < N } <-> ( i e. Prime /\ i < N ) ) |
11 |
|
prmnn |
|- ( i e. Prime -> i e. NN ) |
12 |
11
|
nnnn0d |
|- ( i e. Prime -> i e. NN0 ) |
13 |
12
|
ad2antrl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( i e. Prime /\ i < N ) ) -> i e. NN0 ) |
14 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
15 |
14
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( i e. Prime /\ i < N ) ) -> N e. NN ) |
16 |
|
simprr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( i e. Prime /\ i < N ) ) -> i < N ) |
17 |
|
elfzo0 |
|- ( i e. ( 0 ..^ N ) <-> ( i e. NN0 /\ N e. NN /\ i < N ) ) |
18 |
13 15 16 17
|
syl3anbrc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( i e. Prime /\ i < N ) ) -> i e. ( 0 ..^ N ) ) |
19 |
18
|
ex |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( i e. Prime /\ i < N ) -> i e. ( 0 ..^ N ) ) ) |
20 |
10 19
|
syl5bi |
|- ( N e. ( ZZ>= ` 3 ) -> ( i e. { p e. Prime | p < N } -> i e. ( 0 ..^ N ) ) ) |
21 |
20
|
ssrdv |
|- ( N e. ( ZZ>= ` 3 ) -> { p e. Prime | p < N } C_ ( 0 ..^ N ) ) |
22 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ { p e. Prime | p < N } C_ ( 0 ..^ N ) ) -> { p e. Prime | p < N } e. Fin ) |
23 |
8 21 22
|
sylancr |
|- ( N e. ( ZZ>= ` 3 ) -> { p e. Prime | p < N } e. Fin ) |
24 |
|
breq1 |
|- ( p = 2 -> ( p < N <-> 2 < N ) ) |
25 |
|
2prm |
|- 2 e. Prime |
26 |
25
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> 2 e. Prime ) |
27 |
|
eluz2 |
|- ( N e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ N e. ZZ /\ 3 <_ N ) ) |
28 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
29 |
28
|
breq1i |
|- ( 3 <_ N <-> ( 2 + 1 ) <_ N ) |
30 |
|
2z |
|- 2 e. ZZ |
31 |
|
zltp1le |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 < N <-> ( 2 + 1 ) <_ N ) ) |
32 |
30 31
|
mpan |
|- ( N e. ZZ -> ( 2 < N <-> ( 2 + 1 ) <_ N ) ) |
33 |
32
|
biimprd |
|- ( N e. ZZ -> ( ( 2 + 1 ) <_ N -> 2 < N ) ) |
34 |
29 33
|
syl5bi |
|- ( N e. ZZ -> ( 3 <_ N -> 2 < N ) ) |
35 |
34
|
imp |
|- ( ( N e. ZZ /\ 3 <_ N ) -> 2 < N ) |
36 |
35
|
3adant1 |
|- ( ( 3 e. ZZ /\ N e. ZZ /\ 3 <_ N ) -> 2 < N ) |
37 |
27 36
|
sylbi |
|- ( N e. ( ZZ>= ` 3 ) -> 2 < N ) |
38 |
24 26 37
|
elrabd |
|- ( N e. ( ZZ>= ` 3 ) -> 2 e. { p e. Prime | p < N } ) |
39 |
38
|
ne0d |
|- ( N e. ( ZZ>= ` 3 ) -> { p e. Prime | p < N } =/= (/) ) |
40 |
|
sseq1 |
|- ( A = { p e. Prime | p < N } -> ( A C_ RR <-> { p e. Prime | p < N } C_ RR ) ) |
41 |
|
eleq1 |
|- ( A = { p e. Prime | p < N } -> ( A e. Fin <-> { p e. Prime | p < N } e. Fin ) ) |
42 |
|
neeq1 |
|- ( A = { p e. Prime | p < N } -> ( A =/= (/) <-> { p e. Prime | p < N } =/= (/) ) ) |
43 |
40 41 42
|
3anbi123d |
|- ( A = { p e. Prime | p < N } -> ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) <-> ( { p e. Prime | p < N } C_ RR /\ { p e. Prime | p < N } e. Fin /\ { p e. Prime | p < N } =/= (/) ) ) ) |
44 |
1 43
|
ax-mp |
|- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) <-> ( { p e. Prime | p < N } C_ RR /\ { p e. Prime | p < N } e. Fin /\ { p e. Prime | p < N } =/= (/) ) ) |
45 |
7 23 39 44
|
syl3anbrc |
|- ( N e. ( ZZ>= ` 3 ) -> ( A C_ RR /\ A e. Fin /\ A =/= (/) ) ) |
46 |
|
fimaxre |
|- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A y <_ x ) |
47 |
45 46
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> E. x e. A A. y e. A y <_ x ) |