Metamath Proof Explorer


Theorem prmndvdsfaclt

Description: A prime number does not divide the factorial of a nonnegative integer less than the prime number. (Contributed by AV, 13-Jul-2021)

Ref Expression
Assertion prmndvdsfaclt PN0N<P¬PN!

Proof

Step Hyp Ref Expression
1 nn0re N0N
2 prmnn PP
3 2 nnred PP
4 ltnle NPN<P¬PN
5 1 3 4 syl2anr PN0N<P¬PN
6 prmfac1 N0PPN!PN
7 6 3exp N0PPN!PN
8 7 impcom PN0PN!PN
9 8 con3d PN0¬PN¬PN!
10 5 9 sylbid PN0N<P¬PN!