Metamath Proof Explorer


Theorem prneimg2

Description: Two pairs are not equal if their counterparts are not equal. (Contributed by AV, 5-Sep-2025)

Ref Expression
Assertion prneimg2 A U B V C X D Y A B C D A C B D A D B C

Proof

Step Hyp Ref Expression
1 preq12bg A U B V C X D Y A B = C D A = C B = D A = D B = C
2 1 necon3abid A U B V C X D Y A B C D ¬ A = C B = D A = D B = C
3 ioran ¬ A = C B = D A = D B = C ¬ A = C B = D ¬ A = D B = C
4 ianor ¬ A = C B = D ¬ A = C ¬ B = D
5 df-ne A C ¬ A = C
6 df-ne B D ¬ B = D
7 5 6 orbi12i A C B D ¬ A = C ¬ B = D
8 4 7 bitr4i ¬ A = C B = D A C B D
9 ianor ¬ A = D B = C ¬ A = D ¬ B = C
10 df-ne A D ¬ A = D
11 df-ne B C ¬ B = C
12 10 11 orbi12i A D B C ¬ A = D ¬ B = C
13 9 12 bitr4i ¬ A = D B = C A D B C
14 8 13 anbi12i ¬ A = C B = D ¬ A = D B = C A C B D A D B C
15 3 14 bitri ¬ A = C B = D A = D B = C A C B D A D B C
16 2 15 bitrdi A U B V C X D Y A B C D A C B D A D B C