Metamath Proof Explorer


Theorem problem2

Description: Practice problem 2. Clues: oveq12i adddiri add4i mulcli recni 2re 3eqtri 10re 5re 1re 4re eqcomi 5p4e9 oveq1i df-3 . (Contributed by Filip Cernatescu, 16-Mar-2019) (Revised by AV, 9-Sep-2021) (Proof modification is discouraged.)

Ref Expression
Assertion problem2 210+5+110+4=310+9

Proof

Step Hyp Ref Expression
1 2re 2
2 1 recni 2
3 10re 10
4 3 recni 10
5 2 4 mulcli 210
6 5re 5
7 6 recni 5
8 1re 1
9 8 recni 1
10 9 4 mulcli 110
11 4re 4
12 11 recni 4
13 5 7 10 12 add4i 210+5+110+4=210+110+5+4
14 2 9 4 adddiri 2+110=210+110
15 14 eqcomi 210+110=2+110
16 5p4e9 5+4=9
17 15 16 oveq12i 210+110+5+4=2+110+9
18 df-3 3=2+1
19 18 eqcomi 2+1=3
20 19 oveq1i 2+110=310
21 20 oveq1i 2+110+9=310+9
22 13 17 21 3eqtri 210+5+110+4=310+9