Metamath Proof Explorer


Theorem prodf

Description: An infinite product of complex terms is a function from an upper set of integers to CC . (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodf.1 Z=M
prodf.2 φM
prodf.3 φkZFk
Assertion prodf φseqM×F:Z

Proof

Step Hyp Ref Expression
1 prodf.1 Z=M
2 prodf.2 φM
3 prodf.3 φkZFk
4 mulcl kxkx
5 4 adantl φkxkx
6 1 2 3 5 seqf φseqM×F:Z