Metamath Proof Explorer


Theorem prprrab

Description: The set of proper pairs of elements of a given set expressed in two ways. (Contributed by AV, 24-Nov-2020)

Ref Expression
Assertion prprrab x𝒫A|x=2=x𝒫A|x=2

Proof

Step Hyp Ref Expression
1 2ne0 20
2 1 neii ¬2=0
3 eqeq1 x=2x=02=0
4 2 3 mtbiri x=2¬x=0
5 hasheq0 xVx=0x=
6 5 bicomd xVx=x=0
7 6 necon3abid xVx¬x=0
8 7 elv x¬x=0
9 4 8 sylibr x=2x
10 9 biantrud x=2x𝒫Ax𝒫Ax
11 eldifsn x𝒫Ax𝒫Ax
12 10 11 bitr4di x=2x𝒫Ax𝒫A
13 12 pm5.32ri x𝒫Ax=2x𝒫Ax=2
14 13 abbii x|x𝒫Ax=2=x|x𝒫Ax=2
15 df-rab x𝒫A|x=2=x|x𝒫Ax=2
16 df-rab x𝒫A|x=2=x|x𝒫Ax=2
17 14 15 16 3eqtr4ri x𝒫A|x=2=x𝒫A|x=2