Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Examples of categories
Preordered sets as thin categories
prstchom
Metamath Proof Explorer
Description: Hom-sets of the constructed category are dependent on the preorder.
Note that prstchom.x and prstchom.y are redundant here due to our
definition of ProsetToCat . However, this should not be assumed
as it is definition-dependent. Therefore, the two hypotheses are
added for explicitness. (Contributed by Zhi Wang , 20-Sep-2024)
Ref
Expression
Hypotheses
prstcnid.c
⊢ φ → C = ProsetToCat ⁡ K
prstcnid.k
⊢ φ → K ∈ Proset
prstchom.l
⊢ φ → ≤ ˙ = ≤ C
prstchom.e
⊢ φ → H = Hom ⁡ C
prstchom.x
⊢ φ → X ∈ Base C
prstchom.y
⊢ φ → Y ∈ Base C
Assertion
prstchom
⊢ φ → X ≤ ˙ Y ↔ X H Y ≠ ∅
Proof
Step
Hyp
Ref
Expression
1
prstcnid.c
⊢ φ → C = ProsetToCat ⁡ K
2
prstcnid.k
⊢ φ → K ∈ Proset
3
prstchom.l
⊢ φ → ≤ ˙ = ≤ C
4
prstchom.e
⊢ φ → H = Hom ⁡ C
5
prstchom.x
⊢ φ → X ∈ Base C
6
prstchom.y
⊢ φ → Y ∈ Base C
7
1 2 3
prstchomval
⊢ φ → ≤ ˙ × 1 𝑜 = Hom ⁡ C
8
4 7
eqtr4d
⊢ φ → H = ≤ ˙ × 1 𝑜
9
1oex
⊢ 1 𝑜 ∈ V
10
9
a1i
⊢ φ → 1 𝑜 ∈ V
11
1n0
⊢ 1 𝑜 ≠ ∅
12
11
a1i
⊢ φ → 1 𝑜 ≠ ∅
13
8 10 12
fvconstrn0
⊢ φ → X ≤ ˙ Y ↔ X H Y ≠ ∅