Metamath Proof Explorer


Theorem prstcnidlem

Description: Lemma for prstcnid and prstchomval . (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φ K Proset
prstcnid.e E = Slot E ndx
prstcnid.no E ndx comp ndx
Assertion prstcnidlem φ E C = E K sSet Hom ndx K × 1 𝑜

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φ K Proset
3 prstcnid.e E = Slot E ndx
4 prstcnid.no E ndx comp ndx
5 1 2 prstcval φ C = K sSet Hom ndx K × 1 𝑜 sSet comp ndx
6 5 fveq2d φ E C = E K sSet Hom ndx K × 1 𝑜 sSet comp ndx
7 3 4 setsnid E K sSet Hom ndx K × 1 𝑜 = E K sSet Hom ndx K × 1 𝑜 sSet comp ndx
8 6 7 eqtr4di φ E C = E K sSet Hom ndx K × 1 𝑜