Metamath Proof Explorer


Theorem psdmrn

Description: The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008)

Ref Expression
Assertion psdmrn RPosetReldomR=RranR=R

Proof

Step Hyp Ref Expression
1 ssun1 domRdomRranR
2 dmrnssfld domRranRR
3 1 2 sstri domRR
4 3 a1i RPosetReldomRR
5 pslem RPosetRelxRxxRxxRxxRxRxxRxxRxx=x
6 5 simp2d RPosetRelxRxRx
7 vex xV
8 7 7 breldm xRxxdomR
9 6 8 syl6 RPosetRelxRxdomR
10 9 ssrdv RPosetRelRdomR
11 4 10 eqssd RPosetReldomR=R
12 ssun2 ranRdomRranR
13 12 2 sstri ranRR
14 13 a1i RPosetRelranRR
15 7 7 brelrn xRxxranR
16 6 15 syl6 RPosetRelxRxranR
17 16 ssrdv RPosetRelRranR
18 14 17 eqssd RPosetRelranR=R
19 11 18 jca RPosetReldomR=RranR=R