Metamath Proof Explorer


Theorem psrbagf

Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024)

Ref Expression
Hypothesis psrbag.d D=f0I|f-1Fin
Assertion psrbagf FDF:I0

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 1 eleq2i FDFf0I|f-1Fin
3 elrabi Ff0I|f-1FinF0I
4 elmapi F0IF:I0
5 3 4 syl Ff0I|f-1FinF:I0
6 2 5 sylbi FDF:I0