Metamath Proof Explorer


Theorem psref2

Description: A poset is antisymmetric and reflexive. (Contributed by FL, 3-Aug-2009)

Ref Expression
Assertion psref2 RPosetRelRR-1=IR

Proof

Step Hyp Ref Expression
1 isps RPosetRelRPosetRelRelRRRRRR-1=IR
2 1 ibi RPosetRelRelRRRRRR-1=IR
3 2 simp3d RPosetRelRR-1=IR