Metamath Proof Explorer


Theorem psssstr

Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996)

Ref Expression
Assertion psssstr ABBCAC

Proof

Step Hyp Ref Expression
1 sspss BCBCB=C
2 psstr ABBCAC
3 2 ex ABBCAC
4 psseq2 B=CABAC
5 4 biimpcd ABB=CAC
6 3 5 jaod ABBCB=CAC
7 6 imp ABBCB=CAC
8 1 7 sylan2b ABBCAC