Metamath Proof Explorer


Theorem psubclsetN

Description: The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses psubclset.a A=AtomsK
psubclset.p ˙=𝑃K
psubclset.c C=PSubClK
Assertion psubclsetN KBC=s|sA˙˙s=s

Proof

Step Hyp Ref Expression
1 psubclset.a A=AtomsK
2 psubclset.p ˙=𝑃K
3 psubclset.c C=PSubClK
4 elex KBKV
5 fveq2 k=KAtomsk=AtomsK
6 5 1 eqtr4di k=KAtomsk=A
7 6 sseq2d k=KsAtomsksA
8 fveq2 k=K𝑃k=𝑃K
9 8 2 eqtr4di k=K𝑃k=˙
10 9 fveq1d k=K𝑃ks=˙s
11 9 10 fveq12d k=K𝑃k𝑃ks=˙˙s
12 11 eqeq1d k=K𝑃k𝑃ks=s˙˙s=s
13 7 12 anbi12d k=KsAtomsk𝑃k𝑃ks=ssA˙˙s=s
14 13 abbidv k=Ks|sAtomsk𝑃k𝑃ks=s=s|sA˙˙s=s
15 df-psubclN PSubCl=kVs|sAtomsk𝑃k𝑃ks=s
16 1 fvexi AV
17 16 pwex 𝒫AV
18 velpw s𝒫AsA
19 18 anbi1i s𝒫A˙˙s=ssA˙˙s=s
20 19 abbii s|s𝒫A˙˙s=s=s|sA˙˙s=s
21 ssab2 s|s𝒫A˙˙s=s𝒫A
22 20 21 eqsstrri s|sA˙˙s=s𝒫A
23 17 22 ssexi s|sA˙˙s=sV
24 14 15 23 fvmpt KVPSubClK=s|sA˙˙s=s
25 3 24 eqtrid KVC=s|sA˙˙s=s
26 4 25 syl KBC=s|sA˙˙s=s