Metamath Proof Explorer


Theorem pw2f1o2val2

Description: Membership in a mapped set under the pw2f1o2 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypothesis pw2f1o2.f F=x2𝑜Ax-11𝑜
Assertion pw2f1o2val2 X2𝑜AYAYFXXY=1𝑜

Proof

Step Hyp Ref Expression
1 pw2f1o2.f F=x2𝑜Ax-11𝑜
2 1 pw2f1o2val X2𝑜AFX=X-11𝑜
3 2 eleq2d X2𝑜AYFXYX-11𝑜
4 3 adantr X2𝑜AYAYFXYX-11𝑜
5 elmapi X2𝑜AX:A2𝑜
6 ffn X:A2𝑜XFnA
7 fniniseg XFnAYX-11𝑜YAXY=1𝑜
8 5 6 7 3syl X2𝑜AYX-11𝑜YAXY=1𝑜
9 8 baibd X2𝑜AYAYX-11𝑜XY=1𝑜
10 4 9 bitrd X2𝑜AYAYFXXY=1𝑜