Metamath Proof Explorer


Theorem pw2f1o2val2

Description: Membership in a mapped set under the pw2f1o2 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypothesis pw2f1o2.f 𝐹 = ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) )
Assertion pw2f1o2val2 ( ( 𝑋 ∈ ( 2om 𝐴 ) ∧ 𝑌𝐴 ) → ( 𝑌 ∈ ( 𝐹𝑋 ) ↔ ( 𝑋𝑌 ) = 1o ) )

Proof

Step Hyp Ref Expression
1 pw2f1o2.f 𝐹 = ( 𝑥 ∈ ( 2om 𝐴 ) ↦ ( 𝑥 “ { 1o } ) )
2 1 pw2f1o2val ( 𝑋 ∈ ( 2om 𝐴 ) → ( 𝐹𝑋 ) = ( 𝑋 “ { 1o } ) )
3 2 eleq2d ( 𝑋 ∈ ( 2om 𝐴 ) → ( 𝑌 ∈ ( 𝐹𝑋 ) ↔ 𝑌 ∈ ( 𝑋 “ { 1o } ) ) )
4 3 adantr ( ( 𝑋 ∈ ( 2om 𝐴 ) ∧ 𝑌𝐴 ) → ( 𝑌 ∈ ( 𝐹𝑋 ) ↔ 𝑌 ∈ ( 𝑋 “ { 1o } ) ) )
5 elmapi ( 𝑋 ∈ ( 2om 𝐴 ) → 𝑋 : 𝐴 ⟶ 2o )
6 ffn ( 𝑋 : 𝐴 ⟶ 2o𝑋 Fn 𝐴 )
7 fniniseg ( 𝑋 Fn 𝐴 → ( 𝑌 ∈ ( 𝑋 “ { 1o } ) ↔ ( 𝑌𝐴 ∧ ( 𝑋𝑌 ) = 1o ) ) )
8 5 6 7 3syl ( 𝑋 ∈ ( 2om 𝐴 ) → ( 𝑌 ∈ ( 𝑋 “ { 1o } ) ↔ ( 𝑌𝐴 ∧ ( 𝑋𝑌 ) = 1o ) ) )
9 8 baibd ( ( 𝑋 ∈ ( 2om 𝐴 ) ∧ 𝑌𝐴 ) → ( 𝑌 ∈ ( 𝑋 “ { 1o } ) ↔ ( 𝑋𝑌 ) = 1o ) )
10 4 9 bitrd ( ( 𝑋 ∈ ( 2om 𝐴 ) ∧ 𝑌𝐴 ) → ( 𝑌 ∈ ( 𝐹𝑋 ) ↔ ( 𝑋𝑌 ) = 1o ) )