| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2f1o2.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) |
| 2 |
1
|
pw2f1o2val |
⊢ ( 𝑋 ∈ ( 2o ↑m 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = ( ◡ 𝑋 “ { 1o } ) ) |
| 3 |
2
|
eleq2d |
⊢ ( 𝑋 ∈ ( 2o ↑m 𝐴 ) → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑌 ∈ ( ◡ 𝑋 “ { 1o } ) ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑋 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑌 ∈ ( ◡ 𝑋 “ { 1o } ) ) ) |
| 5 |
|
elmapi |
⊢ ( 𝑋 ∈ ( 2o ↑m 𝐴 ) → 𝑋 : 𝐴 ⟶ 2o ) |
| 6 |
|
ffn |
⊢ ( 𝑋 : 𝐴 ⟶ 2o → 𝑋 Fn 𝐴 ) |
| 7 |
|
fniniseg |
⊢ ( 𝑋 Fn 𝐴 → ( 𝑌 ∈ ( ◡ 𝑋 “ { 1o } ) ↔ ( 𝑌 ∈ 𝐴 ∧ ( 𝑋 ‘ 𝑌 ) = 1o ) ) ) |
| 8 |
5 6 7
|
3syl |
⊢ ( 𝑋 ∈ ( 2o ↑m 𝐴 ) → ( 𝑌 ∈ ( ◡ 𝑋 “ { 1o } ) ↔ ( 𝑌 ∈ 𝐴 ∧ ( 𝑋 ‘ 𝑌 ) = 1o ) ) ) |
| 9 |
8
|
baibd |
⊢ ( ( 𝑋 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ∈ ( ◡ 𝑋 “ { 1o } ) ↔ ( 𝑋 ‘ 𝑌 ) = 1o ) ) |
| 10 |
4 9
|
bitrd |
⊢ ( ( 𝑋 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝑋 ‘ 𝑌 ) = 1o ) ) |