Metamath Proof Explorer


Theorem pw2sltdiv1d

Description: Surreal less-than relationship for division by a power of two. (Contributed by Scott Fenton, 18-Jan-2026)

Ref Expression
Hypotheses pw2sltdivmuld.1 φ A No
pw2sltdivmuld.2 φ B No
pw2sltdivmuld.3 φ N 0s
Assertion pw2sltdiv1d Could not format assertion : No typesetting found for |- ( ph -> ( A ( A /su ( 2s ^su N ) )

Proof

Step Hyp Ref Expression
1 pw2sltdivmuld.1 φ A No
2 pw2sltdivmuld.2 φ B No
3 pw2sltdivmuld.3 φ N 0s
4 2 3 pw2divscld Could not format ( ph -> ( B /su ( 2s ^su N ) ) e. No ) : No typesetting found for |- ( ph -> ( B /su ( 2s ^su N ) ) e. No ) with typecode |-
5 1 4 3 pw2sltdivmuld Could not format ( ph -> ( ( A /su ( 2s ^su N ) ) A ( ( A /su ( 2s ^su N ) ) A
6 2 3 pw2divscan2d Could not format ( ph -> ( ( 2s ^su N ) x.s ( B /su ( 2s ^su N ) ) ) = B ) : No typesetting found for |- ( ph -> ( ( 2s ^su N ) x.s ( B /su ( 2s ^su N ) ) ) = B ) with typecode |-
7 6 breq2d Could not format ( ph -> ( A A ( A A
8 5 7 bitr2d Could not format ( ph -> ( A ( A /su ( 2s ^su N ) ) ( A ( A /su ( 2s ^su N ) )