Metamath Proof Explorer


Theorem pw2sltdiv1d

Description: Surreal less-than relationship for division by a power of two. (Contributed by Scott Fenton, 18-Jan-2026)

Ref Expression
Hypotheses pw2sltdivmuld.1
|- ( ph -> A e. No )
pw2sltdivmuld.2
|- ( ph -> B e. No )
pw2sltdivmuld.3
|- ( ph -> N e. NN0_s )
Assertion pw2sltdiv1d
|- ( ph -> ( A  ( A /su ( 2s ^su N ) ) 

Proof

Step Hyp Ref Expression
1 pw2sltdivmuld.1
 |-  ( ph -> A e. No )
2 pw2sltdivmuld.2
 |-  ( ph -> B e. No )
3 pw2sltdivmuld.3
 |-  ( ph -> N e. NN0_s )
4 2 3 pw2divscld
 |-  ( ph -> ( B /su ( 2s ^su N ) ) e. No )
5 1 4 3 pw2sltdivmuld
 |-  ( ph -> ( ( A /su ( 2s ^su N ) )  A 
6 2 3 pw2divscan2d
 |-  ( ph -> ( ( 2s ^su N ) x.s ( B /su ( 2s ^su N ) ) ) = B )
7 6 breq2d
 |-  ( ph -> ( A  A 
8 5 7 bitr2d
 |-  ( ph -> ( A  ( A /su ( 2s ^su N ) )