| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2sltdivmuld.1 |
|- ( ph -> A e. No ) |
| 2 |
|
pw2sltdivmuld.2 |
|- ( ph -> B e. No ) |
| 3 |
|
pw2sltdivmuld.3 |
|- ( ph -> N e. NN0_s ) |
| 4 |
|
2sno |
|- 2s e. No |
| 5 |
|
expscl |
|- ( ( 2s e. No /\ N e. NN0_s ) -> ( 2s ^su N ) e. No ) |
| 6 |
4 3 5
|
sylancr |
|- ( ph -> ( 2s ^su N ) e. No ) |
| 7 |
|
2nns |
|- 2s e. NN_s |
| 8 |
|
nnsgt0 |
|- ( 2s e. NN_s -> 0s |
| 9 |
7 8
|
ax-mp |
|- 0s |
| 10 |
|
expsgt0 |
|- ( ( 2s e. No /\ N e. NN0_s /\ 0s 0s |
| 11 |
4 9 10
|
mp3an13 |
|- ( N e. NN0_s -> 0s |
| 12 |
3 11
|
syl |
|- ( ph -> 0s |
| 13 |
|
pw2recs |
|- ( N e. NN0_s -> E. x e. No ( ( 2s ^su N ) x.s x ) = 1s ) |
| 14 |
3 13
|
syl |
|- ( ph -> E. x e. No ( ( 2s ^su N ) x.s x ) = 1s ) |
| 15 |
1 2 6 12 14
|
sltdivmulwd |
|- ( ph -> ( ( A /su ( 2s ^su N ) ) A |