Metamath Proof Explorer


Theorem pw2sltdivmuld

Description: Surreal less-than relationship between division and multiplication for powers of two. (Contributed by Scott Fenton, 11-Dec-2025)

Ref Expression
Hypotheses pw2sltdivmuld.1
|- ( ph -> A e. No )
pw2sltdivmuld.2
|- ( ph -> B e. No )
pw2sltdivmuld.3
|- ( ph -> N e. NN0_s )
Assertion pw2sltdivmuld
|- ( ph -> ( ( A /su ( 2s ^su N ) )  A 

Proof

Step Hyp Ref Expression
1 pw2sltdivmuld.1
 |-  ( ph -> A e. No )
2 pw2sltdivmuld.2
 |-  ( ph -> B e. No )
3 pw2sltdivmuld.3
 |-  ( ph -> N e. NN0_s )
4 2sno
 |-  2s e. No
5 expscl
 |-  ( ( 2s e. No /\ N e. NN0_s ) -> ( 2s ^su N ) e. No )
6 4 3 5 sylancr
 |-  ( ph -> ( 2s ^su N ) e. No )
7 2nns
 |-  2s e. NN_s
8 nnsgt0
 |-  ( 2s e. NN_s -> 0s 
9 7 8 ax-mp
 |-  0s 
10 expsgt0
 |-  ( ( 2s e. No /\ N e. NN0_s /\ 0s  0s 
11 4 9 10 mp3an13
 |-  ( N e. NN0_s -> 0s 
12 3 11 syl
 |-  ( ph -> 0s 
13 pw2recs
 |-  ( N e. NN0_s -> E. x e. No ( ( 2s ^su N ) x.s x ) = 1s )
14 3 13 syl
 |-  ( ph -> E. x e. No ( ( 2s ^su N ) x.s x ) = 1s )
15 1 2 6 12 14 sltdivmulwd
 |-  ( ph -> ( ( A /su ( 2s ^su N ) )  A