Metamath Proof Explorer


Theorem pw2sltdivmuld

Description: Surreal less-than relationship between division and multiplication for powers of two. (Contributed by Scott Fenton, 11-Dec-2025)

Ref Expression
Hypotheses pw2sltdivmuld.1 ( 𝜑𝐴 No )
pw2sltdivmuld.2 ( 𝜑𝐵 No )
pw2sltdivmuld.3 ( 𝜑𝑁 ∈ ℕ0s )
Assertion pw2sltdivmuld ( 𝜑 → ( ( 𝐴 /su ( 2ss 𝑁 ) ) <s 𝐵𝐴 <s ( ( 2ss 𝑁 ) ·s 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 pw2sltdivmuld.1 ( 𝜑𝐴 No )
2 pw2sltdivmuld.2 ( 𝜑𝐵 No )
3 pw2sltdivmuld.3 ( 𝜑𝑁 ∈ ℕ0s )
4 2sno 2s No
5 expscl ( ( 2s No 𝑁 ∈ ℕ0s ) → ( 2ss 𝑁 ) ∈ No )
6 4 3 5 sylancr ( 𝜑 → ( 2ss 𝑁 ) ∈ No )
7 2nns 2s ∈ ℕs
8 nnsgt0 ( 2s ∈ ℕs → 0s <s 2s )
9 7 8 ax-mp 0s <s 2s
10 expsgt0 ( ( 2s No 𝑁 ∈ ℕ0s ∧ 0s <s 2s ) → 0s <s ( 2ss 𝑁 ) )
11 4 9 10 mp3an13 ( 𝑁 ∈ ℕ0s → 0s <s ( 2ss 𝑁 ) )
12 3 11 syl ( 𝜑 → 0s <s ( 2ss 𝑁 ) )
13 pw2recs ( 𝑁 ∈ ℕ0s → ∃ 𝑥 No ( ( 2ss 𝑁 ) ·s 𝑥 ) = 1s )
14 3 13 syl ( 𝜑 → ∃ 𝑥 No ( ( 2ss 𝑁 ) ·s 𝑥 ) = 1s )
15 1 2 6 12 14 sltdivmulwd ( 𝜑 → ( ( 𝐴 /su ( 2ss 𝑁 ) ) <s 𝐵𝐴 <s ( ( 2ss 𝑁 ) ·s 𝐵 ) ) )