| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2sltdivmuld.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
pw2sltdivmuld.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
pw2sltdivmuld.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0s ) |
| 4 |
|
2sno |
⊢ 2s ∈ No |
| 5 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑁 ∈ ℕ0s ) → ( 2s ↑s 𝑁 ) ∈ No ) |
| 6 |
4 3 5
|
sylancr |
⊢ ( 𝜑 → ( 2s ↑s 𝑁 ) ∈ No ) |
| 7 |
|
2nns |
⊢ 2s ∈ ℕs |
| 8 |
|
nnsgt0 |
⊢ ( 2s ∈ ℕs → 0s <s 2s ) |
| 9 |
7 8
|
ax-mp |
⊢ 0s <s 2s |
| 10 |
|
expsgt0 |
⊢ ( ( 2s ∈ No ∧ 𝑁 ∈ ℕ0s ∧ 0s <s 2s ) → 0s <s ( 2s ↑s 𝑁 ) ) |
| 11 |
4 9 10
|
mp3an13 |
⊢ ( 𝑁 ∈ ℕ0s → 0s <s ( 2s ↑s 𝑁 ) ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → 0s <s ( 2s ↑s 𝑁 ) ) |
| 13 |
|
pw2recs |
⊢ ( 𝑁 ∈ ℕ0s → ∃ 𝑥 ∈ No ( ( 2s ↑s 𝑁 ) ·s 𝑥 ) = 1s ) |
| 14 |
3 13
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( ( 2s ↑s 𝑁 ) ·s 𝑥 ) = 1s ) |
| 15 |
1 2 6 12 14
|
sltdivmulwd |
⊢ ( 𝜑 → ( ( 𝐴 /su ( 2s ↑s 𝑁 ) ) <s 𝐵 ↔ 𝐴 <s ( ( 2s ↑s 𝑁 ) ·s 𝐵 ) ) ) |