| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2sltdivmuld.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
pw2sltdivmuld.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
pw2sltdivmuld.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0s ) |
| 4 |
2 3
|
pw2divscld |
⊢ ( 𝜑 → ( 𝐵 /su ( 2s ↑s 𝑁 ) ) ∈ No ) |
| 5 |
1 4 3
|
pw2sltdivmuld |
⊢ ( 𝜑 → ( ( 𝐴 /su ( 2s ↑s 𝑁 ) ) <s ( 𝐵 /su ( 2s ↑s 𝑁 ) ) ↔ 𝐴 <s ( ( 2s ↑s 𝑁 ) ·s ( 𝐵 /su ( 2s ↑s 𝑁 ) ) ) ) ) |
| 6 |
2 3
|
pw2divscan2d |
⊢ ( 𝜑 → ( ( 2s ↑s 𝑁 ) ·s ( 𝐵 /su ( 2s ↑s 𝑁 ) ) ) = 𝐵 ) |
| 7 |
6
|
breq2d |
⊢ ( 𝜑 → ( 𝐴 <s ( ( 2s ↑s 𝑁 ) ·s ( 𝐵 /su ( 2s ↑s 𝑁 ) ) ) ↔ 𝐴 <s 𝐵 ) ) |
| 8 |
5 7
|
bitr2d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 /su ( 2s ↑s 𝑁 ) ) <s ( 𝐵 /su ( 2s ↑s 𝑁 ) ) ) ) |