Metamath Proof Explorer


Theorem pw2sltdiv1d

Description: Surreal less-than relationship for division by a power of two. (Contributed by Scott Fenton, 18-Jan-2026)

Ref Expression
Hypotheses pw2sltdivmuld.1 ( 𝜑𝐴 No )
pw2sltdivmuld.2 ( 𝜑𝐵 No )
pw2sltdivmuld.3 ( 𝜑𝑁 ∈ ℕ0s )
Assertion pw2sltdiv1d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 /su ( 2ss 𝑁 ) ) <s ( 𝐵 /su ( 2ss 𝑁 ) ) ) )

Proof

Step Hyp Ref Expression
1 pw2sltdivmuld.1 ( 𝜑𝐴 No )
2 pw2sltdivmuld.2 ( 𝜑𝐵 No )
3 pw2sltdivmuld.3 ( 𝜑𝑁 ∈ ℕ0s )
4 2 3 pw2divscld ( 𝜑 → ( 𝐵 /su ( 2ss 𝑁 ) ) ∈ No )
5 1 4 3 pw2sltdivmuld ( 𝜑 → ( ( 𝐴 /su ( 2ss 𝑁 ) ) <s ( 𝐵 /su ( 2ss 𝑁 ) ) ↔ 𝐴 <s ( ( 2ss 𝑁 ) ·s ( 𝐵 /su ( 2ss 𝑁 ) ) ) ) )
6 2 3 pw2divscan2d ( 𝜑 → ( ( 2ss 𝑁 ) ·s ( 𝐵 /su ( 2ss 𝑁 ) ) ) = 𝐵 )
7 6 breq2d ( 𝜑 → ( 𝐴 <s ( ( 2ss 𝑁 ) ·s ( 𝐵 /su ( 2ss 𝑁 ) ) ) ↔ 𝐴 <s 𝐵 ) )
8 5 7 bitr2d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 /su ( 2ss 𝑁 ) ) <s ( 𝐵 /su ( 2ss 𝑁 ) ) ) )