Metamath Proof Explorer


Theorem avgslt1d

Description: Ordering property for average. (Contributed by Scott Fenton, 11-Dec-2025)

Ref Expression
Hypotheses avgs.1 ( 𝜑𝐴 No )
avgs.2 ( 𝜑𝐵 No )
Assertion avgslt1d ( 𝜑 → ( 𝐴 <s 𝐵𝐴 <s ( ( 𝐴 +s 𝐵 ) /su 2s ) ) )

Proof

Step Hyp Ref Expression
1 avgs.1 ( 𝜑𝐴 No )
2 avgs.2 ( 𝜑𝐵 No )
3 1 2 1 sltadd2d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 +s 𝐴 ) <s ( 𝐴 +s 𝐵 ) ) )
4 no2times ( 𝐴 No → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) )
5 1 4 syl ( 𝜑 → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) )
6 5 breq1d ( 𝜑 → ( ( 2s ·s 𝐴 ) <s ( 𝐴 +s 𝐵 ) ↔ ( 𝐴 +s 𝐴 ) <s ( 𝐴 +s 𝐵 ) ) )
7 3 6 bitr4d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 2s ·s 𝐴 ) <s ( 𝐴 +s 𝐵 ) ) )
8 2sno 2s No
9 exps1 ( 2s No → ( 2ss 1s ) = 2s )
10 8 9 ax-mp ( 2ss 1s ) = 2s
11 10 oveq1i ( ( 2ss 1s ) ·s 𝐴 ) = ( 2s ·s 𝐴 )
12 11 breq1i ( ( ( 2ss 1s ) ·s 𝐴 ) <s ( 𝐴 +s 𝐵 ) ↔ ( 2s ·s 𝐴 ) <s ( 𝐴 +s 𝐵 ) )
13 7 12 bitr4di ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( ( 2ss 1s ) ·s 𝐴 ) <s ( 𝐴 +s 𝐵 ) ) )
14 1 2 addscld ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No )
15 1n0s 1s ∈ ℕ0s
16 15 a1i ( 𝜑 → 1s ∈ ℕ0s )
17 1 14 16 pw2sltmuldiv2d ( 𝜑 → ( ( ( 2ss 1s ) ·s 𝐴 ) <s ( 𝐴 +s 𝐵 ) ↔ 𝐴 <s ( ( 𝐴 +s 𝐵 ) /su ( 2ss 1s ) ) ) )
18 10 oveq2i ( ( 𝐴 +s 𝐵 ) /su ( 2ss 1s ) ) = ( ( 𝐴 +s 𝐵 ) /su 2s )
19 18 breq2i ( 𝐴 <s ( ( 𝐴 +s 𝐵 ) /su ( 2ss 1s ) ) ↔ 𝐴 <s ( ( 𝐴 +s 𝐵 ) /su 2s ) )
20 17 19 bitrdi ( 𝜑 → ( ( ( 2ss 1s ) ·s 𝐴 ) <s ( 𝐴 +s 𝐵 ) ↔ 𝐴 <s ( ( 𝐴 +s 𝐵 ) /su 2s ) ) )
21 13 20 bitrd ( 𝜑 → ( 𝐴 <s 𝐵𝐴 <s ( ( 𝐴 +s 𝐵 ) /su 2s ) ) )