Metamath Proof Explorer


Theorem avgslt2d

Description: Ordering property for average. (Contributed by Scott Fenton, 11-Dec-2025)

Ref Expression
Hypotheses avgs.1 ( 𝜑𝐴 No )
avgs.2 ( 𝜑𝐵 No )
Assertion avgslt2d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( ( 𝐴 +s 𝐵 ) /su 2s ) <s 𝐵 ) )

Proof

Step Hyp Ref Expression
1 avgs.1 ( 𝜑𝐴 No )
2 avgs.2 ( 𝜑𝐵 No )
3 1 2 2 sltadd1d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 +s 𝐵 ) <s ( 𝐵 +s 𝐵 ) ) )
4 no2times ( 𝐵 No → ( 2s ·s 𝐵 ) = ( 𝐵 +s 𝐵 ) )
5 2 4 syl ( 𝜑 → ( 2s ·s 𝐵 ) = ( 𝐵 +s 𝐵 ) )
6 5 breq2d ( 𝜑 → ( ( 𝐴 +s 𝐵 ) <s ( 2s ·s 𝐵 ) ↔ ( 𝐴 +s 𝐵 ) <s ( 𝐵 +s 𝐵 ) ) )
7 3 6 bitr4d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 +s 𝐵 ) <s ( 2s ·s 𝐵 ) ) )
8 2sno 2s No
9 exps1 ( 2s No → ( 2ss 1s ) = 2s )
10 8 9 ax-mp ( 2ss 1s ) = 2s
11 10 oveq1i ( ( 2ss 1s ) ·s 𝐵 ) = ( 2s ·s 𝐵 )
12 11 breq2i ( ( 𝐴 +s 𝐵 ) <s ( ( 2ss 1s ) ·s 𝐵 ) ↔ ( 𝐴 +s 𝐵 ) <s ( 2s ·s 𝐵 ) )
13 7 12 bitr4di ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 +s 𝐵 ) <s ( ( 2ss 1s ) ·s 𝐵 ) ) )
14 1 2 addscld ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No )
15 1n0s 1s ∈ ℕ0s
16 15 a1i ( 𝜑 → 1s ∈ ℕ0s )
17 14 2 16 pw2sltdivmuld ( 𝜑 → ( ( ( 𝐴 +s 𝐵 ) /su ( 2ss 1s ) ) <s 𝐵 ↔ ( 𝐴 +s 𝐵 ) <s ( ( 2ss 1s ) ·s 𝐵 ) ) )
18 13 17 bitr4d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( ( 𝐴 +s 𝐵 ) /su ( 2ss 1s ) ) <s 𝐵 ) )
19 10 oveq2i ( ( 𝐴 +s 𝐵 ) /su ( 2ss 1s ) ) = ( ( 𝐴 +s 𝐵 ) /su 2s )
20 19 breq1i ( ( ( 𝐴 +s 𝐵 ) /su ( 2ss 1s ) ) <s 𝐵 ↔ ( ( 𝐴 +s 𝐵 ) /su 2s ) <s 𝐵 )
21 18 20 bitrdi ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( ( 𝐴 +s 𝐵 ) /su 2s ) <s 𝐵 ) )