| Step |
Hyp |
Ref |
Expression |
| 1 |
|
avgs.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
avgs.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
1 2 2
|
sltadd1d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 +s 𝐵 ) <s ( 𝐵 +s 𝐵 ) ) ) |
| 4 |
|
no2times |
⊢ ( 𝐵 ∈ No → ( 2s ·s 𝐵 ) = ( 𝐵 +s 𝐵 ) ) |
| 5 |
2 4
|
syl |
⊢ ( 𝜑 → ( 2s ·s 𝐵 ) = ( 𝐵 +s 𝐵 ) ) |
| 6 |
5
|
breq2d |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) <s ( 2s ·s 𝐵 ) ↔ ( 𝐴 +s 𝐵 ) <s ( 𝐵 +s 𝐵 ) ) ) |
| 7 |
3 6
|
bitr4d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 +s 𝐵 ) <s ( 2s ·s 𝐵 ) ) ) |
| 8 |
|
2sno |
⊢ 2s ∈ No |
| 9 |
|
exps1 |
⊢ ( 2s ∈ No → ( 2s ↑s 1s ) = 2s ) |
| 10 |
8 9
|
ax-mp |
⊢ ( 2s ↑s 1s ) = 2s |
| 11 |
10
|
oveq1i |
⊢ ( ( 2s ↑s 1s ) ·s 𝐵 ) = ( 2s ·s 𝐵 ) |
| 12 |
11
|
breq2i |
⊢ ( ( 𝐴 +s 𝐵 ) <s ( ( 2s ↑s 1s ) ·s 𝐵 ) ↔ ( 𝐴 +s 𝐵 ) <s ( 2s ·s 𝐵 ) ) |
| 13 |
7 12
|
bitr4di |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 +s 𝐵 ) <s ( ( 2s ↑s 1s ) ·s 𝐵 ) ) ) |
| 14 |
1 2
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No ) |
| 15 |
|
1n0s |
⊢ 1s ∈ ℕ0s |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → 1s ∈ ℕ0s ) |
| 17 |
14 2 16
|
pw2sltdivmuld |
⊢ ( 𝜑 → ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s 1s ) ) <s 𝐵 ↔ ( 𝐴 +s 𝐵 ) <s ( ( 2s ↑s 1s ) ·s 𝐵 ) ) ) |
| 18 |
13 17
|
bitr4d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s 1s ) ) <s 𝐵 ) ) |
| 19 |
10
|
oveq2i |
⊢ ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s 1s ) ) = ( ( 𝐴 +s 𝐵 ) /su 2s ) |
| 20 |
19
|
breq1i |
⊢ ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s 1s ) ) <s 𝐵 ↔ ( ( 𝐴 +s 𝐵 ) /su 2s ) <s 𝐵 ) |
| 21 |
18 20
|
bitrdi |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( ( 𝐴 +s 𝐵 ) /su 2s ) <s 𝐵 ) ) |