| Step |
Hyp |
Ref |
Expression |
| 1 |
|
avgs.1 |
|- ( ph -> A e. No ) |
| 2 |
|
avgs.2 |
|- ( ph -> B e. No ) |
| 3 |
1 2 1
|
sltadd2d |
|- ( ph -> ( A ( A +s A ) |
| 4 |
|
no2times |
|- ( A e. No -> ( 2s x.s A ) = ( A +s A ) ) |
| 5 |
1 4
|
syl |
|- ( ph -> ( 2s x.s A ) = ( A +s A ) ) |
| 6 |
5
|
breq1d |
|- ( ph -> ( ( 2s x.s A ) ( A +s A ) |
| 7 |
3 6
|
bitr4d |
|- ( ph -> ( A ( 2s x.s A ) |
| 8 |
|
2sno |
|- 2s e. No |
| 9 |
|
exps1 |
|- ( 2s e. No -> ( 2s ^su 1s ) = 2s ) |
| 10 |
8 9
|
ax-mp |
|- ( 2s ^su 1s ) = 2s |
| 11 |
10
|
oveq1i |
|- ( ( 2s ^su 1s ) x.s A ) = ( 2s x.s A ) |
| 12 |
11
|
breq1i |
|- ( ( ( 2s ^su 1s ) x.s A ) ( 2s x.s A ) |
| 13 |
7 12
|
bitr4di |
|- ( ph -> ( A ( ( 2s ^su 1s ) x.s A ) |
| 14 |
1 2
|
addscld |
|- ( ph -> ( A +s B ) e. No ) |
| 15 |
|
1n0s |
|- 1s e. NN0_s |
| 16 |
15
|
a1i |
|- ( ph -> 1s e. NN0_s ) |
| 17 |
1 14 16
|
pw2sltmuldiv2d |
|- ( ph -> ( ( ( 2s ^su 1s ) x.s A ) A |
| 18 |
10
|
oveq2i |
|- ( ( A +s B ) /su ( 2s ^su 1s ) ) = ( ( A +s B ) /su 2s ) |
| 19 |
18
|
breq2i |
|- ( A A |
| 20 |
17 19
|
bitrdi |
|- ( ph -> ( ( ( 2s ^su 1s ) x.s A ) A |
| 21 |
13 20
|
bitrd |
|- ( ph -> ( A A |