Metamath Proof Explorer


Theorem avgslt1d

Description: Ordering property for average. (Contributed by Scott Fenton, 11-Dec-2025)

Ref Expression
Hypotheses avgs.1
|- ( ph -> A e. No )
avgs.2
|- ( ph -> B e. No )
Assertion avgslt1d
|- ( ph -> ( A  A 

Proof

Step Hyp Ref Expression
1 avgs.1
 |-  ( ph -> A e. No )
2 avgs.2
 |-  ( ph -> B e. No )
3 1 2 1 sltadd2d
 |-  ( ph -> ( A  ( A +s A ) 
4 no2times
 |-  ( A e. No -> ( 2s x.s A ) = ( A +s A ) )
5 1 4 syl
 |-  ( ph -> ( 2s x.s A ) = ( A +s A ) )
6 5 breq1d
 |-  ( ph -> ( ( 2s x.s A )  ( A +s A ) 
7 3 6 bitr4d
 |-  ( ph -> ( A  ( 2s x.s A ) 
8 2sno
 |-  2s e. No
9 exps1
 |-  ( 2s e. No -> ( 2s ^su 1s ) = 2s )
10 8 9 ax-mp
 |-  ( 2s ^su 1s ) = 2s
11 10 oveq1i
 |-  ( ( 2s ^su 1s ) x.s A ) = ( 2s x.s A )
12 11 breq1i
 |-  ( ( ( 2s ^su 1s ) x.s A )  ( 2s x.s A ) 
13 7 12 bitr4di
 |-  ( ph -> ( A  ( ( 2s ^su 1s ) x.s A ) 
14 1 2 addscld
 |-  ( ph -> ( A +s B ) e. No )
15 1n0s
 |-  1s e. NN0_s
16 15 a1i
 |-  ( ph -> 1s e. NN0_s )
17 1 14 16 pw2sltmuldiv2d
 |-  ( ph -> ( ( ( 2s ^su 1s ) x.s A )  A 
18 10 oveq2i
 |-  ( ( A +s B ) /su ( 2s ^su 1s ) ) = ( ( A +s B ) /su 2s )
19 18 breq2i
 |-  ( A  A 
20 17 19 bitrdi
 |-  ( ph -> ( ( ( 2s ^su 1s ) x.s A )  A 
21 13 20 bitrd
 |-  ( ph -> ( A  A