Metamath Proof Explorer


Theorem pwfseqlem2

Description: Lemma for pwfseq . (Contributed by Mario Carneiro, 18-Nov-2014) (Revised by AV, 18-Sep-2021)

Ref Expression
Hypotheses pwfseqlem4.g φG:𝒫A1-1nωAn
pwfseqlem4.x φXA
pwfseqlem4.h φH:ω1-1 ontoX
pwfseqlem4.ps ψxArx×xrWexωx
pwfseqlem4.k φψK:nωxn1-1x
pwfseqlem4.d D=Gwx|K-1wranG¬wG-1K-1w
pwfseqlem4.f F=xV,rVifxFinHcardxDzω|¬Dzx
Assertion pwfseqlem2 YFinRVYFR=HcardY

Proof

Step Hyp Ref Expression
1 pwfseqlem4.g φG:𝒫A1-1nωAn
2 pwfseqlem4.x φXA
3 pwfseqlem4.h φH:ω1-1 ontoX
4 pwfseqlem4.ps ψxArx×xrWexωx
5 pwfseqlem4.k φψK:nωxn1-1x
6 pwfseqlem4.d D=Gwx|K-1wranG¬wG-1K-1w
7 pwfseqlem4.f F=xV,rVifxFinHcardxDzω|¬Dzx
8 oveq1 a=YaFs=YFs
9 2fveq3 a=YHcarda=HcardY
10 8 9 eqeq12d a=YaFs=HcardaYFs=HcardY
11 oveq2 s=RYFs=YFR
12 11 eqeq1d s=RYFs=HcardYYFR=HcardY
13 nfcv _xa
14 nfcv _ra
15 nfcv _rs
16 nfmpo1 _xxV,rVifxFinHcardxDzω|¬Dzx
17 7 16 nfcxfr _xF
18 nfcv _xr
19 13 17 18 nfov _xaFr
20 19 nfeq1 xaFr=Hcarda
21 nfmpo2 _rxV,rVifxFinHcardxDzω|¬Dzx
22 7 21 nfcxfr _rF
23 14 22 15 nfov _raFs
24 23 nfeq1 raFs=Hcarda
25 oveq1 x=axFr=aFr
26 2fveq3 x=aHcardx=Hcarda
27 25 26 eqeq12d x=axFr=HcardxaFr=Hcarda
28 oveq2 r=saFr=aFs
29 28 eqeq1d r=saFr=HcardaaFs=Hcarda
30 vex xV
31 vex rV
32 fvex HcardxV
33 fvex Dzω|¬DzxV
34 32 33 ifex ifxFinHcardxDzω|¬DzxV
35 7 ovmpt4g xVrVifxFinHcardxDzω|¬DzxVxFr=ifxFinHcardxDzω|¬Dzx
36 30 31 34 35 mp3an xFr=ifxFinHcardxDzω|¬Dzx
37 iftrue xFinifxFinHcardxDzω|¬Dzx=Hcardx
38 36 37 eqtrid xFinxFr=Hcardx
39 38 adantr xFinrVxFr=Hcardx
40 13 14 15 20 24 27 29 39 vtocl2gaf aFinsVaFs=Hcarda
41 10 12 40 vtocl2ga YFinRVYFR=HcardY