Metamath Proof Explorer


Theorem pwselbasb

Description: Membership in the base set of a structure product. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwsbas.y Y=R𝑠I
pwsbas.f B=BaseR
pwselbas.v V=BaseY
Assertion pwselbasb RWIZXVX:IB

Proof

Step Hyp Ref Expression
1 pwsbas.y Y=R𝑠I
2 pwsbas.f B=BaseR
3 pwselbas.v V=BaseY
4 1 2 pwsbas RWIZBI=BaseY
5 4 3 eqtr4di RWIZBI=V
6 5 eleq2d RWIZXBIXV
7 2 fvexi BV
8 elmapg BVIZXBIX:IB
9 7 8 mpan IZXBIX:IB
10 9 adantl RWIZXBIX:IB
11 6 10 bitr3d RWIZXVX:IB