Metamath Proof Explorer


Theorem pwsval

Description: Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses pwsval.y Y=R𝑠I
pwsval.f F=ScalarR
Assertion pwsval RVIWY=F𝑠I×R

Proof

Step Hyp Ref Expression
1 pwsval.y Y=R𝑠I
2 pwsval.f F=ScalarR
3 elex RVRV
4 elex IWIV
5 simpl r=Ri=Ir=R
6 5 fveq2d r=Ri=IScalarr=ScalarR
7 6 2 eqtr4di r=Ri=IScalarr=F
8 id i=Ii=I
9 sneq r=Rr=R
10 xpeq12 i=Ir=Ri×r=I×R
11 8 9 10 syl2anr r=Ri=Ii×r=I×R
12 7 11 oveq12d r=Ri=IScalarr𝑠i×r=F𝑠I×R
13 df-pws 𝑠=rV,iVScalarr𝑠i×r
14 ovex F𝑠I×RV
15 12 13 14 ovmpoa RVIVR𝑠I=F𝑠I×R
16 3 4 15 syl2an RVIWR𝑠I=F𝑠I×R
17 1 16 eqtrid RVIWY=F𝑠I×R