Metamath Proof Explorer


Theorem pwtrrVD

Description: Virtual deduction proof of pwtr ; see pwtrVD for the converse. (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis pwtrrVD.1 AV
Assertion pwtrrVD Tr𝒫ATrA

Proof

Step Hyp Ref Expression
1 pwtrrVD.1 AV
2 dftr2 TrAzyzyyAzA
3 idn1 Tr𝒫ATr𝒫A
4 idn2 Tr𝒫A,zyyAzyyA
5 simpr zyyAyA
6 4 5 e2 Tr𝒫A,zyyAyA
7 1 pwid A𝒫A
8 trel Tr𝒫AyAA𝒫Ay𝒫A
9 8 expd Tr𝒫AyAA𝒫Ay𝒫A
10 3 6 7 9 e120 Tr𝒫A,zyyAy𝒫A
11 elpwi y𝒫AyA
12 10 11 e2 Tr𝒫A,zyyAyA
13 simpl zyyAzy
14 4 13 e2 Tr𝒫A,zyyAzy
15 ssel yAzyzA
16 12 14 15 e22 Tr𝒫A,zyyAzA
17 16 in2 Tr𝒫AzyyAzA
18 17 gen12 Tr𝒫AzyzyyAzA
19 biimpr TrAzyzyyAzAzyzyyAzATrA
20 2 18 19 e01 Tr𝒫ATrA
21 20 in1 Tr𝒫ATrA