Description: Virtual deduction proof of pwtr ; see pwtrVD for the converse. (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pwtrrVD.1 | |
|
Assertion | pwtrrVD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwtrrVD.1 | |
|
2 | dftr2 | |
|
3 | idn1 | |
|
4 | idn2 | |
|
5 | simpr | |
|
6 | 4 5 | e2 | |
7 | 1 | pwid | |
8 | trel | |
|
9 | 8 | expd | |
10 | 3 6 7 9 | e120 | |
11 | elpwi | |
|
12 | 10 11 | e2 | |
13 | simpl | |
|
14 | 4 13 | e2 | |
15 | ssel | |
|
16 | 12 14 15 | e22 | |
17 | 16 | in2 | |
18 | 17 | gen12 | |
19 | biimpr | |
|
20 | 2 18 19 | e01 | |
21 | 20 | in1 | |