Metamath Proof Explorer


Theorem qexpcl

Description: Closure of exponentiation of rationals. For integer exponents, see qexpclz . (Contributed by NM, 16-Dec-2005)

Ref Expression
Assertion qexpcl AN0AN

Proof

Step Hyp Ref Expression
1 qsscn
2 qmulcl xyxy
3 1z 1
4 zq 11
5 3 4 ax-mp 1
6 1 2 5 expcllem AN0AN