Metamath Proof Explorer


Theorem qqhval

Description: Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Hypotheses qqhval.1 × ˙ = / r R
qqhval.2 1 ˙ = 1 R
qqhval.3 L = ℤRHom R
Assertion qqhval R V ℚHom R = ran x , y L -1 Unit R x y L x × ˙ L y

Proof

Step Hyp Ref Expression
1 qqhval.1 × ˙ = / r R
2 qqhval.2 1 ˙ = 1 R
3 qqhval.3 L = ℤRHom R
4 eqidd f = R =
5 fveq2 f = R ℤRHom f = ℤRHom R
6 5 3 eqtr4di f = R ℤRHom f = L
7 6 cnveqd f = R ℤRHom f -1 = L -1
8 fveq2 f = R Unit f = Unit R
9 7 8 imaeq12d f = R ℤRHom f -1 Unit f = L -1 Unit R
10 fveq2 f = R / r f = / r R
11 10 1 eqtr4di f = R / r f = × ˙
12 6 fveq1d f = R ℤRHom f x = L x
13 6 fveq1d f = R ℤRHom f y = L y
14 11 12 13 oveq123d f = R ℤRHom f x / r f ℤRHom f y = L x × ˙ L y
15 14 opeq2d f = R x y ℤRHom f x / r f ℤRHom f y = x y L x × ˙ L y
16 4 9 15 mpoeq123dv f = R x , y ℤRHom f -1 Unit f x y ℤRHom f x / r f ℤRHom f y = x , y L -1 Unit R x y L x × ˙ L y
17 16 rneqd f = R ran x , y ℤRHom f -1 Unit f x y ℤRHom f x / r f ℤRHom f y = ran x , y L -1 Unit R x y L x × ˙ L y
18 df-qqh ℚHom = f V ran x , y ℤRHom f -1 Unit f x y ℤRHom f x / r f ℤRHom f y
19 zex V
20 3 fvexi L V
21 20 cnvex L -1 V
22 imaexg L -1 V L -1 Unit R V
23 21 22 ax-mp L -1 Unit R V
24 19 23 mpoex x , y L -1 Unit R x y L x × ˙ L y V
25 24 rnex ran x , y L -1 Unit R x y L x × ˙ L y V
26 17 18 25 fvmpt R V ℚHom R = ran x , y L -1 Unit R x y L x × ˙ L y