Metamath Proof Explorer


Theorem qqtopn

Description: The topology of the field of the rational numbers. (Contributed by Thierry Arnoux, 29-Aug-2020)

Ref Expression
Assertion qqtopn TopOpen fld 𝑡 = TopOpen fld 𝑠

Proof

Step Hyp Ref Expression
1 retopn topGen ran . = TopOpen fld
2 1 oveq1i topGen ran . 𝑡 = TopOpen fld 𝑡
3 df-refld fld = fld 𝑠
4 3 oveq1i fld 𝑠 = fld 𝑠 𝑠
5 reex V
6 qssre
7 ressabs V fld 𝑠 𝑠 = fld 𝑠
8 5 6 7 mp2an fld 𝑠 𝑠 = fld 𝑠
9 4 8 eqtr2i fld 𝑠 = fld 𝑠
10 9 1 resstopn topGen ran . 𝑡 = TopOpen fld 𝑠
11 2 10 eqtr3i TopOpen fld 𝑡 = TopOpen fld 𝑠