Metamath Proof Explorer


Theorem qqtopn

Description: The topology of the field of the rational numbers. (Contributed by Thierry Arnoux, 29-Aug-2020)

Ref Expression
Assertion qqtopn TopOpenfld𝑡=TopOpenfld𝑠

Proof

Step Hyp Ref Expression
1 retopn topGenran.=TopOpenfld
2 1 oveq1i topGenran.𝑡=TopOpenfld𝑡
3 df-refld fld=fld𝑠
4 3 oveq1i fld𝑠=fld𝑠𝑠
5 reex V
6 qssre
7 ressabs Vfld𝑠𝑠=fld𝑠
8 5 6 7 mp2an fld𝑠𝑠=fld𝑠
9 4 8 eqtr2i fld𝑠=fld𝑠
10 9 1 resstopn topGenran.𝑡=TopOpenfld𝑠
11 2 10 eqtr3i TopOpenfld𝑡=TopOpenfld𝑠