Metamath Proof Explorer


Theorem qsresid

Description: Simplification of a special quotient set. (Contributed by Peter Mazsa, 2-Sep-2020)

Ref Expression
Assertion qsresid A/RA=A/R

Proof

Step Hyp Ref Expression
1 ecres2 vAvRA=vR
2 1 eqeq2d vAu=vRAu=vR
3 2 rexbiia vAu=vRAvAu=vR
4 3 abbii u|vAu=vRA=u|vAu=vR
5 df-qs A/RA=u|vAu=vRA
6 df-qs A/R=u|vAu=vR
7 4 5 6 3eqtr4i A/RA=A/R