Metamath Proof Explorer


Theorem qsresid

Description: Simplification of a special quotient set. (Contributed by Peter Mazsa, 2-Sep-2020)

Ref Expression
Assertion qsresid A / R A = A / R

Proof

Step Hyp Ref Expression
1 ecres2 v A v R A = v R
2 1 eqeq2d v A u = v R A u = v R
3 2 rexbiia v A u = v R A v A u = v R
4 3 abbii u | v A u = v R A = u | v A u = v R
5 df-qs A / R A = u | v A u = v R A
6 df-qs A / R = u | v A u = v R
7 4 5 6 3eqtr4i A / R A = A / R