Metamath Proof Explorer


Theorem qsss

Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis qsss.1 φRErA
Assertion qsss φA/R𝒫A

Proof

Step Hyp Ref Expression
1 qsss.1 φRErA
2 vex xV
3 2 elqs xA/RyAx=yR
4 1 ecss φyRA
5 sseq1 x=yRxAyRA
6 4 5 syl5ibrcom φx=yRxA
7 velpw x𝒫AxA
8 6 7 imbitrrdi φx=yRx𝒫A
9 8 rexlimdvw φyAx=yRx𝒫A
10 3 9 biimtrid φxA/Rx𝒫A
11 10 ssrdv φA/R𝒫A