Metamath Proof Explorer


Theorem qtoptopon

Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion qtoptopon JTopOnXF:XontoYJqTopFTopOnY

Proof

Step Hyp Ref Expression
1 topontop JTopOnXJTop
2 toponuni JTopOnXX=J
3 foeq2 X=JF:XontoYF:JontoY
4 2 3 syl JTopOnXF:XontoYF:JontoY
5 4 biimpa JTopOnXF:XontoYF:JontoY
6 fofn F:JontoYFFnJ
7 5 6 syl JTopOnXF:XontoYFFnJ
8 eqid J=J
9 8 qtoptop JTopFFnJJqTopFTop
10 1 7 9 syl2an2r JTopOnXF:XontoYJqTopFTop
11 8 qtopuni JTopF:JontoYY=JqTopF
12 1 5 11 syl2an2r JTopOnXF:XontoYY=JqTopF
13 istopon JqTopFTopOnYJqTopFTopY=JqTopF
14 10 12 13 sylanbrc JTopOnXF:XontoYJqTopFTopOnY