Metamath Proof Explorer


Theorem quad

Description: The quadratic equation. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses quad.a φA
quad.z φA0
quad.b φB
quad.c φC
quad.x φX
quad.d φD=B24AC
Assertion quad φAX2+BX+C=0X=-B+D2AX=-B-D2A

Proof

Step Hyp Ref Expression
1 quad.a φA
2 quad.z φA0
3 quad.b φB
4 quad.c φC
5 quad.x φX
6 quad.d φD=B24AC
7 3 sqcld φB2
8 4cn 4
9 1 4 mulcld φAC
10 mulcl 4AC4AC
11 8 9 10 sylancr φ4AC
12 7 11 subcld φB24AC
13 6 12 eqeltrd φD
14 13 sqrtcld φD
15 13 sqsqrtd φD2=D
16 15 6 eqtrd φD2=B24AC
17 1 2 3 4 5 14 16 quad2 φAX2+BX+C=0X=-B+D2AX=-B-D2A