Description: The addition in a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qus0subg.0 | |
|
qus0subg.s | |
||
qus0subg.e | |
||
qus0subg.u | |
||
qus0subg.b | |
||
Assertion | qus0subgadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qus0subg.0 | |
|
2 | qus0subg.s | |
|
3 | qus0subg.e | |
|
4 | qus0subg.u | |
|
5 | qus0subg.b | |
|
6 | 4 | a1i | |
7 | 5 | a1i | |
8 | 1 | 0subg | |
9 | 2 8 | eqeltrid | |
10 | 5 3 | eqger | |
11 | 9 10 | syl | |
12 | id | |
|
13 | 1 | 0nsg | |
14 | 2 13 | eqeltrid | |
15 | eqid | |
|
16 | 5 3 15 | eqgcpbl | |
17 | 14 16 | syl | |
18 | 5 15 | grpcl | |
19 | 18 | 3expb | |
20 | eqid | |
|
21 | 6 7 11 12 17 19 15 20 | qusaddval | |
22 | 21 | 3expb | |
23 | 1 2 5 3 | eqg0subgecsn | |
24 | 23 | adantrr | |
25 | 1 2 5 3 | eqg0subgecsn | |
26 | 25 | adantrl | |
27 | 24 26 | oveq12d | |
28 | 5 15 | grpcl | |
29 | 28 | 3expb | |
30 | 1 2 5 3 | eqg0subgecsn | |
31 | 29 30 | syldan | |
32 | 22 27 31 | 3eqtr3d | |
33 | 32 | ralrimivva | |