| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qus0subg.0 |  | 
						
							| 2 |  | qus0subg.s |  | 
						
							| 3 |  | qus0subg.e |  | 
						
							| 4 |  | qus0subg.u |  | 
						
							| 5 |  | qus0subg.b |  | 
						
							| 6 | 4 | a1i |  | 
						
							| 7 | 5 | a1i |  | 
						
							| 8 | 1 | 0subg |  | 
						
							| 9 | 2 8 | eqeltrid |  | 
						
							| 10 | 5 3 | eqger |  | 
						
							| 11 | 9 10 | syl |  | 
						
							| 12 |  | id |  | 
						
							| 13 | 1 | 0nsg |  | 
						
							| 14 | 2 13 | eqeltrid |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 5 3 15 | eqgcpbl |  | 
						
							| 17 | 14 16 | syl |  | 
						
							| 18 | 5 15 | grpcl |  | 
						
							| 19 | 18 | 3expb |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 6 7 11 12 17 19 15 20 | qusaddval |  | 
						
							| 22 | 21 | 3expb |  | 
						
							| 23 | 1 2 5 3 | eqg0subgecsn |  | 
						
							| 24 | 23 | adantrr |  | 
						
							| 25 | 1 2 5 3 | eqg0subgecsn |  | 
						
							| 26 | 25 | adantrl |  | 
						
							| 27 | 24 26 | oveq12d |  | 
						
							| 28 | 5 15 | grpcl |  | 
						
							| 29 | 28 | 3expb |  | 
						
							| 30 | 1 2 5 3 | eqg0subgecsn |  | 
						
							| 31 | 29 30 | syldan |  | 
						
							| 32 | 22 27 31 | 3eqtr3d |  | 
						
							| 33 | 32 | ralrimivva |  |