Metamath Proof Explorer


Theorem qus0subgadd

Description: The addition in a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025)

Ref Expression
Hypotheses qus0subg.0 0˙=0G
qus0subg.s S=0˙
qus0subg.e ˙=G~QGS
qus0subg.u U=G/𝑠˙
qus0subg.b B=BaseG
Assertion qus0subgadd GGrpaBbBa+Ub=a+Gb

Proof

Step Hyp Ref Expression
1 qus0subg.0 0˙=0G
2 qus0subg.s S=0˙
3 qus0subg.e ˙=G~QGS
4 qus0subg.u U=G/𝑠˙
5 qus0subg.b B=BaseG
6 4 a1i GGrpU=G/𝑠˙
7 5 a1i GGrpB=BaseG
8 1 0subg GGrp0˙SubGrpG
9 2 8 eqeltrid GGrpSSubGrpG
10 5 3 eqger SSubGrpG˙ErB
11 9 10 syl GGrp˙ErB
12 id GGrpGGrp
13 1 0nsg GGrp0˙NrmSGrpG
14 2 13 eqeltrid GGrpSNrmSGrpG
15 eqid +G=+G
16 5 3 15 eqgcpbl SNrmSGrpGx˙py˙qx+Gy˙p+Gq
17 14 16 syl GGrpx˙py˙qx+Gy˙p+Gq
18 5 15 grpcl GGrppBqBp+GqB
19 18 3expb GGrppBqBp+GqB
20 eqid +U=+U
21 6 7 11 12 17 19 15 20 qusaddval GGrpaBbBa˙+Ub˙=a+Gb˙
22 21 3expb GGrpaBbBa˙+Ub˙=a+Gb˙
23 1 2 5 3 eqg0subgecsn GGrpaBa˙=a
24 23 adantrr GGrpaBbBa˙=a
25 1 2 5 3 eqg0subgecsn GGrpbBb˙=b
26 25 adantrl GGrpaBbBb˙=b
27 24 26 oveq12d GGrpaBbBa˙+Ub˙=a+Ub
28 5 15 grpcl GGrpaBbBa+GbB
29 28 3expb GGrpaBbBa+GbB
30 1 2 5 3 eqg0subgecsn GGrpa+GbBa+Gb˙=a+Gb
31 29 30 syldan GGrpaBbBa+Gb˙=a+Gb
32 22 27 31 3eqtr3d GGrpaBbBa+Ub=a+Gb
33 32 ralrimivva GGrpaBbBa+Ub=a+Gb