Metamath Proof Explorer


Theorem qusbas2

Description: Alternate definition of the group quotient set, as the set of all cosets of the form ( { x } .(+) N ) . (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses qusbas2.1 B=BaseG
qusbas2.2 ˙=LSSumG
qusbas2.3 φxBNSubGrpG
Assertion qusbas2 φB/G~QGN=ranxBx˙N

Proof

Step Hyp Ref Expression
1 qusbas2.1 B=BaseG
2 qusbas2.2 ˙=LSSumG
3 qusbas2.3 φxBNSubGrpG
4 df-qs B/G~QGN=y|xBy=xG~QGN
5 eqid xBxG~QGN=xBxG~QGN
6 5 rnmpt ranxBxG~QGN=y|xBy=xG~QGN
7 4 6 eqtr4i B/G~QGN=ranxBxG~QGN
8 simpr φxBxB
9 1 2 3 8 quslsm φxBxG~QGN=x˙N
10 9 mpteq2dva φxBxG~QGN=xBx˙N
11 10 rneqd φranxBxG~QGN=ranxBx˙N
12 7 11 eqtrid φB/G~QGN=ranxBx˙N