Metamath Proof Explorer


Theorem qusin

Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses qusin.u φU=R/𝑠˙
qusin.v φV=BaseR
qusin.e φ˙W
qusin.r φRZ
qusin.s φ˙VV
Assertion qusin φU=R/𝑠˙V×V

Proof

Step Hyp Ref Expression
1 qusin.u φU=R/𝑠˙
2 qusin.v φV=BaseR
3 qusin.e φ˙W
4 qusin.r φRZ
5 qusin.s φ˙VV
6 ecinxp ˙VVxVx˙=x˙V×V
7 5 6 sylan φxVx˙=x˙V×V
8 7 mpteq2dva φxVx˙=xVx˙V×V
9 8 oveq1d φxVx˙𝑠R=xVx˙V×V𝑠R
10 eqid xVx˙=xVx˙
11 1 2 10 3 4 qusval φU=xVx˙𝑠R
12 eqidd φR/𝑠˙V×V=R/𝑠˙V×V
13 eqid xVx˙V×V=xVx˙V×V
14 inex1g ˙W˙V×VV
15 3 14 syl φ˙V×VV
16 12 2 13 15 4 qusval φR/𝑠˙V×V=xVx˙V×V𝑠R
17 9 11 16 3eqtr4d φU=R/𝑠˙V×V