Metamath Proof Explorer


Theorem quss

Description: The scalar field of a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses qusbas.u φU=R/𝑠˙
qusbas.v φV=BaseR
qusbas.e φ˙W
qusbas.r φRZ
quss.k K=ScalarR
Assertion quss φK=ScalarU

Proof

Step Hyp Ref Expression
1 qusbas.u φU=R/𝑠˙
2 qusbas.v φV=BaseR
3 qusbas.e φ˙W
4 qusbas.r φRZ
5 quss.k K=ScalarR
6 eqid xVx˙=xVx˙
7 1 2 6 3 4 qusval φU=xVx˙𝑠R
8 1 2 6 3 4 quslem φxVx˙:VontoV/˙
9 7 2 8 4 5 imassca φK=ScalarU