Metamath Proof Explorer


Theorem r1elcl

Description: Each set of the cumulative hierarchy is closed under membership. (Contributed by BTernaryTau, 30-Dec-2025)

Ref Expression
Assertion r1elcl A R1 B C A C R1 B

Proof

Step Hyp Ref Expression
1 r1elwf A R1 B A R1 On
2 rankelb A R1 On C A rank C rank A
3 1 2 syl A R1 B C A rank C rank A
4 3 imp A R1 B C A rank C rank A
5 rankr1ai A R1 B rank A B
6 elfvdm A R1 B B dom R1
7 r1fnon R1 Fn On
8 7 fndmi dom R1 = On
9 6 8 eleqtrdi A R1 B B On
10 ontr1 B On rank C rank A rank A B rank C B
11 9 10 syl A R1 B rank C rank A rank A B rank C B
12 5 11 mpan2d A R1 B rank C rank A rank C B
13 12 adantr A R1 B C A rank C rank A rank C B
14 4 13 mpd A R1 B C A rank C B
15 elwf A R1 On C A C R1 On
16 1 15 sylan A R1 B C A C R1 On
17 rankr1ag C R1 On B dom R1 C R1 B rank C B
18 6 17 sylan2 C R1 On A R1 B C R1 B rank C B
19 18 ancoms A R1 B C R1 On C R1 B rank C B
20 16 19 syldan A R1 B C A C R1 B rank C B
21 14 20 mpbird A R1 B C A C R1 B