Metamath Proof Explorer


Theorem rababg

Description: Condition when restricted class is equal to unrestricted class. (Contributed by RP, 13-Aug-2020)

Ref Expression
Assertion rababg xφxAxA|φ=x|φ

Proof

Step Hyp Ref Expression
1 ancrb φxAφxAφ
2 1 albii xφxAxφxAφ
3 nfv yφxAφ
4 nfsab1 xyx|φ
5 nfrab1 _xxA|φ
6 5 nfcri xyxA|φ
7 4 6 nfim xyx|φyxA|φ
8 abid xx|φφ
9 eleq1w x=yxx|φyx|φ
10 8 9 bitr3id x=yφyx|φ
11 rabid xxA|φxAφ
12 eleq1w x=yxxA|φyxA|φ
13 11 12 bitr3id x=yxAφyxA|φ
14 10 13 imbi12d x=yφxAφyx|φyxA|φ
15 3 7 14 cbvalv1 xφxAφyyx|φyxA|φ
16 eqss xA|φ=x|φxA|φx|φx|φxA|φ
17 rabssab xA|φx|φ
18 17 biantrur x|φxA|φxA|φx|φx|φxA|φ
19 dfss2 x|φxA|φyyx|φyxA|φ
20 16 18 19 3bitr2ri yyx|φyxA|φxA|φ=x|φ
21 2 15 20 3bitri xφxAxA|φ=x|φ