Metamath Proof Explorer


Theorem rabssf

Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis rabssf.1 _xB
Assertion rabssf xA|φBxAφxB

Proof

Step Hyp Ref Expression
1 rabssf.1 _xB
2 df-rab xA|φ=x|xAφ
3 2 sseq1i xA|φBx|xAφB
4 1 abssf x|xAφBxxAφxB
5 impexp xAφxBxAφxB
6 5 albii xxAφxBxxAφxB
7 df-ral xAφxBxxAφxB
8 6 7 bitr4i xxAφxBxAφxB
9 3 4 8 3bitri xA|φBxAφxB