Metamath Proof Explorer


Theorem raddcom12d

Description: Swap the first two variables in an equation with addition on the right, converting it into a subtraction. Version of mvrraddd with a commuted consequent, and of mvlraddd with a commuted hypothesis. (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses raddcom12d.b φB
raddcom12d.c φC
raddcom12d.1 φA=B+C
Assertion raddcom12d φB=AC

Proof

Step Hyp Ref Expression
1 raddcom12d.b φB
2 raddcom12d.c φC
3 raddcom12d.1 φA=B+C
4 1 2 3 mvrraddd φAC=B
5 4 eqcomd φB=AC