Metamath Proof Explorer


Theorem ralbidc

Description: Formula-building rule for restricted universal quantifier and additional condition (deduction form). A variant of ralbidb . (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Hypotheses ralbidb.1 φxAxBψ
ralbidc.2 φxAxBψχθ
Assertion ralbidc φxAχxBψθ

Proof

Step Hyp Ref Expression
1 ralbidb.1 φxAxBψ
2 ralbidc.2 φxAxBψχθ
3 1 2 logic2 φxAχxBψθ
4 impexp xBψθxBψθ
5 3 4 bitrdi φxAχxBψθ
6 5 ralbidv2 φxAχxBψθ