Metamath Proof Explorer


Theorem ralbidc

Description: Formula-building rule for restricted universal quantifier and additional condition (deduction form). A variant of ralbidb . (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Hypotheses ralbidb.1 φ x A x B ψ
ralbidc.2 φ x A x B ψ χ θ
Assertion ralbidc φ x A χ x B ψ θ

Proof

Step Hyp Ref Expression
1 ralbidb.1 φ x A x B ψ
2 ralbidc.2 φ x A x B ψ χ θ
3 1 2 logic2 φ x A χ x B ψ θ
4 impexp x B ψ θ x B ψ θ
5 3 4 bitrdi φ x A χ x B ψ θ
6 5 ralbidv2 φ x A χ x B ψ θ