Metamath Proof Explorer


Theorem ralin

Description: Restricted universal quantification over intersection. (Contributed by Peter Mazsa, 8-Sep-2023)

Ref Expression
Assertion ralin xABφxAxBφ

Proof

Step Hyp Ref Expression
1 elin xABxAxB
2 1 imbi1i xABφxAxBφ
3 impexp xAxBφxAxBφ
4 2 3 bitri xABφxAxBφ
5 4 ralbii2 xABφxAxBφ