Metamath Proof Explorer


Theorem ralnex

Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997) (Proof shortened by BJ, 16-Jul-2021)

Ref Expression
Assertion ralnex xA¬φ¬xAφ

Proof

Step Hyp Ref Expression
1 raln xA¬φx¬xAφ
2 alnex x¬xAφ¬xxAφ
3 df-rex xAφxxAφ
4 2 3 xchbinxr x¬xAφ¬xAφ
5 1 4 bitri xA¬φ¬xAφ