Metamath Proof Explorer


Theorem ralprg

Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypotheses ralprg.1 x=Aφψ
ralprg.2 x=Bφχ
Assertion ralprg AVBWxABφψχ

Proof

Step Hyp Ref Expression
1 ralprg.1 x=Aφψ
2 ralprg.2 x=Bφχ
3 df-pr AB=AB
4 3 raleqi xABφxABφ
5 ralunb xABφxAφxBφ
6 4 5 bitri xABφxAφxBφ
7 1 ralsng AVxAφψ
8 2 ralsng BWxBφχ
9 7 8 bi2anan9 AVBWxAφxBφψχ
10 6 9 bitrid AVBWxABφψχ